Skip to main content
Log in

Thermal degradation and combustion of a polypropylene nanocomposite based on organically modified layered aluminosilicate

  • Degradation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The specific features of thermal degradation and combustion of polypropylene nanocomposites based on organically modified layered aluminosilicate were studied. On the basis of thermogravimetric analysis data, a kinetic model that takes into account the diffusive character of the thermal degradation process for the PP nanocomposite was proposed. The basic flammability parameters of the nanocomposite were determined with the use of a cone calorimeter. The influence of diffusion constraints in the charred nanocomposite layer on the maximum heat release rate as a principal parameter of flammability was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Wall, J. Polym. Sci. 17, 141 (1955).

    Article  CAS  Google Scholar 

  2. N. Grassie, Chemistry of Vinyl Polymer Degradation (Butterworth, London, 1956).

    Google Scholar 

  3. Yu. M. Moiseev and M. V. Neiman, Vysokomol. Soedin. 3, 1383 (1961).

    CAS  Google Scholar 

  4. H. Bockhorn, A. Hornung, U. Hornung, and D. Schawaller, J. Anal. Appl. Pyrolysis 48, 93 (1999).

    CAS  Google Scholar 

  5. L. Ballice and R. Reimert, Chem. Eng. Process. 41, 289 (2002).

    Article  CAS  Google Scholar 

  6. M. V. S. Murty, P. Rangarajan, E. A. Grulke, and D. Bhattacharyya, Fuel Process. Technol. 49, 75 (1996).

    CAS  Google Scholar 

  7. J. H. Chan and S. T. Balke, Polym. Degrad. Stab. 57, 135 (1997).

    CAS  Google Scholar 

  8. Z. Gao, T. Kaneko, I. Amasaki, and M. Nakada, Polym. Degrad. Stab. 80, 269 (2003).

    CAS  Google Scholar 

  9. E. Giannelis, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 8, 29 (1996).

    CAS  Google Scholar 

  10. J. W. Gilman, T. Kashiwagi, M. R. Nyden, et al., in Chemistry and Technology of Polymer Additives, Ed. by S. Ak-Malaika, A. Golovoy, and C. A. Wilkie (Blackwell, Malden, 1999), Chap. 14, p. 249.

    Google Scholar 

  11. M. Zanetti, S. Lomakin, and G. Camino, Macromol. Mater. Eng. 279, 1 (2000).

    Article  CAS  Google Scholar 

  12. Y. Kojima, A. Usuki, M. Kawasumi, et al., J. Mater. Res. 8, 1185 (1993).

    CAS  Google Scholar 

  13. M. Zanetti, G. Camino, P. Reichert, and R. Mulhaupt, Macromol. Rapid Commun. 22, 176 (2001).

    Article  CAS  Google Scholar 

  14. H. Qin, S. Zhang, C. Zhao, et al., Polym. Degrad. Stab. 85, 807 (2004).

    CAS  Google Scholar 

  15. J. Opfermann, Rechentechnik/Datenverarbeitung 22, 26 (1985).

    Google Scholar 

  16. V. Babrauskas, Fire Mater. 19, 243 (1995).

    CAS  Google Scholar 

  17. N. Grassie and G. Scott, Polymer Degradation and Stabilization (Cambridge Univ. Press, Cambridge, 1985; Mir, Moscow, 1988).

    Google Scholar 

  18. J. Opfermann, J. Therm. Anal. Cal. 60, 641 (2000).

    Article  CAS  Google Scholar 

  19. H. L. Friedman, J. Polym. Sci., Part C 6, 175 (1965).

    Google Scholar 

  20. J. Opfermann and E. Kaisersberger, Thermochim. Acta 11, 167 (1992).

    Google Scholar 

  21. S. M. Lomakin and G. E. Zaikov, Modern Polymer Flame Retardancy (VSP International Scientific, Utrecht, 2003).

    Google Scholar 

  22. J. W. Gilman, Appl. Clay Sci. 15, 31 (1999).

    Article  CAS  Google Scholar 

  23. G. W. Gilman, C. L. Jackson, A. B. Morgan, et al., Chem. Mater. 12, 1866 (2000).

    Article  CAS  Google Scholar 

  24. V. Babrauskas and R. Peacock, Fire Saf. J. 19, 255 (1992).

    Google Scholar 

  25. A. Tewarson, in Handbook of Fire Protection Engineering, Ed. by P. J. DiNenno (National Fire Protection Association, Quincy, 1988), Sect. 1, Chap. 13, p. 178.

    Google Scholar 

  26. R. D. Davis, J. W. Gilman, and D. L. Van der Hart, Polym. Degrad. Stab. 79, 111 (2003).

    CAS  Google Scholar 

  27. R. Krishnamoorti and E. P. Giannelis, Macromolecules 30, 4097 (1997).

    Article  CAS  Google Scholar 

  28. T. Kashiwagi, R. H. Harris, Jr., Zhang Xin, et al., Polymer 45, 881 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Lomakin, I.L. Dubnikova, S.M. Berezina, G.E. Zaikov, 2006, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2006, Vol. 48, No. 1, pp. 90–105.

This work was supported by the Russian Foundation for Basic Research, project no. 04-03-32052.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomakin, S.M., Dubnikova, I.L., Berezina, S.M. et al. Thermal degradation and combustion of a polypropylene nanocomposite based on organically modified layered aluminosilicate. Polym. Sci. Ser. A 48, 72–84 (2006). https://doi.org/10.1134/S0965545X06010111

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X06010111

Keywords

Navigation