Skip to main content
Log in

Metal-Containing Granulated Yh Zeolites with Hierarchic Structure in Isophorone Aromatization

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The physicochemical properties of a series of catalysts based on granulated Na-Yh zeolite with the hierarchic (micro–meso–macro) pore structure (Na-Yh, HNa-Yh, MgO/Na-Yh, La2O3/Na-Yh, TiO2/Na-Yh) and the activity and selectivity of these catalysts in isophorone aromatization were studied. MgO/Na-Yh and La2O3/Na-Yh zeolites with high content of basic sites and low content of Brønsted acid sites are the most effective in the synthesis of 3,5-dimethylphenol: The 3,5-dimethylphenol formation selectivity reaches 63–69% at 87–94% isophorone conversion. In the presence of Na-Yh zeolite containing both acid and base sites, the prevalent reactions are isophorone isomerization and synthesis of trimethylbenzenes. The modification of Na-Yh with titanium oxide leads to an increase in the content of acid sites on the TiO2/Na-Yh surface and to the prevalence of the aromatization to form trimethylbenzenes. In the presence of HNa-Yh containing a set of the strongest Brønsted and Lewis acid sites, isophorone transforms into a mixture of polymethylbenzenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bennett, J. and Mabille, C., Advanced Fuel Additives for Modern Internal Combustion Engines, in Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Amsterdam: Elsevier; 2022. p. 197–229. https://doi.org/10.1016/B978-0-323-90979-2.00002-0

  2. Bloomfield, S.F. and Miller, E.A., J. Hosp. Infect., 1989, vol. 13, pp. 231−239. https://doi.org/10.1016/0195-6701(89)90003-0

    Article  CAS  PubMed  Google Scholar 

  3. Deng, Q., Nie, G., Pan, L., Zou, J.-J., Zhang, X., and Wang, L., Green Chem., 2015, vol. 17, pp. 4473−4481. https://doi.org/10.1039/C5GC01287B

    Article  CAS  Google Scholar 

  4. Raju, D.B., Rao Rama, K.S., Salvapathi, G.S., Prasad Sai, P.S., and Rao, K.P., Appl. Catal. A: General, 2000, vol. 193, pp. 123–128. https://doi.org/10.1016/S0926-860X(99)00418-4

    Article  CAS  Google Scholar 

  5. Wang, D., Zhenyu, L., and Qingya, L., Ind. Eng. Chem. Res., 2019, vol. 58, no. 16, pp. 6226–6234. https://doi.org/10.1021/acs.iecr.9b00175

    Article  CAS  Google Scholar 

  6. Feng, B., Jing, Y., Guo, Y., Liu, X., and Wang, Y., Green Chem., 2021, vol. 23, pp. 9640–9645. https://doi.org/10.1039/D1GC02767K

    Article  CAS  Google Scholar 

  7. Granda, M., Blanco, C., Alvarez, P., Patrick, J.W., and Menéndez, R., Chem. Rev., 2014, vol. 114, no. 3, pp. 1608−1636. https://doi.org/10.1021/cr400256y

    Article  CAS  PubMed  Google Scholar 

  8. Kirichenko, G.N., Glazunova, V.I., Kirichenko, Y.Yu., and Dzhemilev, U.M., Petrol. Chem., 2006, vol. 46, pp. 434–438. https://doi.org/10.1134/S0965544106060090

    Article  Google Scholar 

  9. Patent CN 1583697A, 2005.

  10. Salvapati, G.S., Ramanamurty, K.V., Janardanarao, M., and Vaidyeswaran, R., Appl. Catal. A: General, 1989, vol. 48, pp. 223–233. https://doi.org/10.1016/S0166-9834(00)82794-3

    Article  CAS  Google Scholar 

  11. David Raju, B., Rama Rao, K.S., Salvapathi, G.S., Sai Prasad, P.S., and Rao Kanta, P., Appl. Catal. A: General, 2001, vol. 209, pp. 335–344. https://doi.org/10.1016/S0926-860X(00)00771-7

    Article  Google Scholar 

  12. Patent US 4453025, 1984.

  13. Patent CN 108083962A, 2018.

  14. Patent CN 107793297A, 2018.

  15. Kerstens, D., Smeyers, B., Van Waeyenberg, J., Zhang, Q., Yu, J., and Sels, B.F., Adv. Mater., 2020, vol. 32, no. 44, article 2004690. https://doi.org/10.1002/adma.202004690

  16. Chal, R., Gérardin, C., Bulut, M., and van Donk, S., ChemCatChem, 2011, vol. 3, pp. 67–81. https://doi.org/10.1002/cctc.201000158

    Article  CAS  Google Scholar 

  17. Serebrennikov, D.V., Grigor’eva, N.G., Khazipova, A.N., Samigullina, Z.S., and Kutepov, B.I., Kinet. Catal., 2022, vol. 63, pp. 577–584. https://doi.org/10.1134/S0023158422050093

    Article  CAS  Google Scholar 

  18. Grigor’eva, N.G., Filippova, N.A., Bubennov, S.V., Khazipova, A.N., Kutepov, B.I., and Dyakonov, V.A., Petrol. Chem., 2021, vol. 61, no. 3, pp. 364–369. https://doi.org/10.1134/S0965544121030075

    Article  Google Scholar 

  19. Grigor’eva, N.G., Filippova, N.A., Bubennov, S.V., and Kutepov, B.I., Petrol. Chem., 2022, vol. 62, pp. 942–949. https://doi.org/10.1134/S0965544122070131

    Article  Google Scholar 

  20. Grigorieva, N.G., Bayburtli, A.V., Travkina, O.S., Bubennov, S.V., Kuvatova, R.Z., Arteméva, A.S., and Kutepov, B.I., ChemistrySelect, 2022, vol. 7, no. 11, article e202103532. https://doi.org/10.1002/slct.202103532

  21. Patent RU 2456238, 2012.

  22. Travkina, O.S., Agliullin, M.R., Filippova, N.A., Khazipova, A.N., Danilova, I.G., Grigorʼeva, N.G., Narender, N., Pavlov, M.L., and Kutepov, B.I., RSC Adv., 2017, vol. 7, pp. 32581–32590. https://doi.org/10.1039/C7RA04742H

    Article  CAS  Google Scholar 

  23. Pavlov, M.L., Travkina, O.S., Khazipova, A.N., Basimova, R.A., Shavaleeva, N.N., and Kutepov, B.I., Petrol. Chem., 2015, vol. 55, no. 7, pp. 552–556. https://doi.org/10.1134/S0965544115070105

    Article  CAS  Google Scholar 

  24. Tamura, M., Shimizu, K., and Satsuma, A., Appl. Catal. A: General, 2012, vols. 433–434, pp. 135–145. https://doi.org/10.1016/j.apcata.2012.05.008

    Article  CAS  Google Scholar 

  25. Morterra, C., Chiorino, A., Ghiotti, G., and Garrone, E., J. Chem. Soc., Faraday Trans. 1, 1979, vol. 75, pp. 271–288. https://doi.org/10.1039/F19797500271

    Article  CAS  Google Scholar 

  26. Huber, S. and Knözinger, H., J. Mol. Catal. A: Chemical, 1999, vol. 141, pp. 117–127. https://doi.org/10.1016/S1381-1169(98)00255-6

    Article  CAS  Google Scholar 

  27. Raju, B.D., Rao, K.S.R., Salvapathi, G.S., Prasad, P.S.S., and Rao, P.K., Top. Catal., 2004, vol. 29, nos. 3–4, pp. 167–174. https://doi.org/10.1023/B:TOCA.0000029799.19387.b7

    Article  CAS  Google Scholar 

  28. Faba, L., Díaz, E., and Ordónez, S., Appl. Catal. B: Environmental, 2013, vols. 142–143, pp. 387–395. https://doi.org/10.1016/j.apcatb.2013.05.043

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 23-13-00213.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Grigor’eva or V. Yu. Kirsanov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’eva, N.G., Kirsanov, V.Y., Korzhova, L.F. et al. Metal-Containing Granulated Yh Zeolites with Hierarchic Structure in Isophorone Aromatization. Pet. Chem. (2024). https://doi.org/10.1134/S0965544124020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544124020038

Keywords:

Navigation