Skip to main content
Log in

Insight into Relationship between the Products Distribution and Molecular Properties in Carboxylation between Benzene Polycarboxylic Acids and CO2

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

CO2 is an important carbon resource, which could be chemically utilized by carboxylation. In this paper, the carboxylation between benzene polycarboxylic acids (BPCAs) and CO2 was conducted using Cs2CO3 as a catalyst. The relationship between the product distribution and Mulliken charge at the reaction site of BPCAs was explored by combining experiments and quantum chemical calculations of molecular properties in the reaction of carboxylation between BPCAs and CO2. The negative Mulliken charge was found to facilitate carboxylation at the reaction site of BPCAs. Hydrogen abstraction was the rate-determining step for carboxylation, and its energy barrier was calculated for different C–H in the BPCA molecule. The results showed that the C–H bond with the more negative Mulliken charge was more easily deprotonated, which further verified the above conclusion. The study provides a convenient approach to predict a product distribution for carboxylation between BPCAs and CO2 according to the Mulliken charge of BPCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore, B., Vorosmarty, C.J., and Schloss, A.L. Nature, 1993, vol. 363, no. 6426, pp. 234–240. https://doi.org/10.1038/363234a0

    Article  CAS  Google Scholar 

  2. Xie, H.P., Liu, T., Wu, Y.F., Wang, Y., Chen, B., and Liao, H., Adv. Eng. Sci., 2022, vol. 54, no. 1, pp. 145–156. https://doi.org/10.15961/j.jsuese.202100680

    Article  Google Scholar 

  3. Wei, W., Sun, Y., Xia, W., and Sun, N., Chem. Ind. Eng. Prog., 2010, vol. 1, pp. 225–253. https://doi.org/10.3724/SP.J.1077.2011.00311

    Article  CAS  Google Scholar 

  4. Qin, Z., Liu, R., Hongbing, J.I., and Jiang, Y., Chem. Ind. Eng. Prog., 2015, vol. 34, no. 1, pp. 119–126. https://doi.org/

    CAS  Google Scholar 

  5. Aresta, M. and Dibenedetto, A., Dalton. Trans., 2007, vol. 28, no. 28, p. 2975. https://doi.org/10.1039/b700658f

    Article  CAS  Google Scholar 

  6. Martín, R. and Kleij, A.W., ChemSusChem, 2011, vol. 4, no. 9, pp. 1259–1263. https://doi.org/10.1002/cssc.201100102

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y., Cen, J.H., Xiong, W.F., Qi, C., and Jiang, H., Chem. Ind. Eng. Prog., 2018, vol. 30, no. 5, pp. 101–117. https://doi.org/10.7536/PC171251

    Article  CAS  Google Scholar 

  8. Liu, X.F. and He, L.N., J. Sci. (Shanghai), 2018, vol. 70, no. 1, pp. 14–19. https://doi.org/10.3969/j.issn.0368-6396.2018.01.005

    Article  Google Scholar 

  9. Wu, Y., Deng, D.L., Deng, H., Hu, K., and Jiang, C.Y., J. Shangdong. Chem. Ind., 2012, vol. 354, no. 6, pp. 969–974. https://doi.org/10.3969/j.issn.1008-021X.2018.21.036

    Article  Google Scholar 

  10. Yu, X.C, Xiao, Y.P., and Han, W.J., J. Nanjing. Normal. Univ., 2020, vol. 43, no. 2, pp. 29–33. https://doi.org/10.3969/j.issn.1001-4616.2020.02.006

    Article  Google Scholar 

  11. Xian, M.M., Miao-Fei, G.U., Sun, Z.N., Zhang, H.F., and Cheng, Z.M., J. East China. Univ. Sci. Tech., 2014, vol. 40, no. 2, pp. 147–152. https://doi.org/10.14135/j.cnki.1006-3080.2014.02.006

    Article  CAS  Google Scholar 

  12. Luo, J. and Larrosa, I., ChemSusChem, 2017, vol. 10, no. 17, pp. 3317–3332. https://doi.org/10.1002/cssc.201701058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Plasch, K., Hofer, G., Keller, W., Hay, S., Heyes, D.J., Dennig, A., Glueck, S.M., and Faber, K., Green Chem., 2018, vol. 20, no. 8, pp. 1754–1759. https://doi.org/10.1039/c8gc00008e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Juliá-Hernández, F., Gaydou, M., Serrano, E., van Gemmeren, M., and Martin, R., Top. Curr. Chem. (Z), 2016, vol. 374, no. 4, p. 45. https://doi.org/10.1007/s41061-016-0045-z

    Article  CAS  Google Scholar 

  15. Vechorkin, O., Hirt, N., and Hu, X., Org. Lett., 2010, vol. 12, no. 15, pp. 3567–3569. https://doi.org/10.1021/ol101450u

    Article  CAS  PubMed  Google Scholar 

  16. Stoychev, S.D., Conifer, C.M., Uhe, A., Hölscher, M., and Leitner, W., Dalton Trans., 2014, vol. 43, no. 29, pp. 11180–11189. https://doi.org/10.1039/c4dt00294f

    Article  CAS  PubMed  Google Scholar 

  17. Boogaerts, I.I.F., Fortman, G.C., Furst, M.R.L., Cazin, C.S.J., and Nolan, S.P., Angew. Chem. Int. Ed., 2010, vol. 49, no. 46, pp. 8674–8677. https://doi.org/10.1002/anie.201004153

    Article  CAS  Google Scholar 

  18. Gu, M. and Cheng, Z., Ind. Eng. Chem. Res., 2014, vol. 53, no. 24, pp. 9992–9998. https://doi.org/10.1021/ie5004762

    Article  CAS  Google Scholar 

  19. Suga, T., Mizuno, H., Takaya, J., and Iwasawa, N., Chem. Commun., 2014, vol. 50, no. 92, pp. 14360–14363. https://doi.org/10.1039/c4cc06188h

    Article  CAS  Google Scholar 

  20. Mizuno, H., Takaya, J., and Iwasawa, N., J. Am. Chem. Soc., 2011, vol. 133, no. 5, pp. 1251–1253. https://doi.org/10.1021/ja109097z

    Article  CAS  PubMed  Google Scholar 

  21. Osakada, K., Sato, R., and Yamamoto, T., Organometallics, 1994, vol. 13, no. 11, pp. 4645–4647. https://doi.org/10.1021/om00023a078

    Article  CAS  Google Scholar 

  22. León, T., Correa, A., and Martin, R., J. Am. Chem. Soc., 2013, vol. 35, no. 4, pp. 1221–1224. https://doi.org/10.1021/ja311045f

    Article  CAS  Google Scholar 

  23. Guo, C.X., Yu, B., Xie, J.N., and He, L.N., Green Chem., 2015, vol. 17, no. 1, pp. 474–479. https://doi.org/10.1039/c4gc01638f

    Article  CAS  Google Scholar 

  24. Cheng, H., Zhao, B., Yao, Y., and Lu, C., Green. Chem., 2015, vol. 17, no. 3, pp. 1675–1682. https://doi.org/10.1039/c4gc02200a

    Article  CAS  Google Scholar 

  25. Yu, D., Tan, M.X., and Zhang, Y., Adv. Synth. Catal., 2012, vol. 35, no. 6, pp. 969–974. https://doi.org/10.1002/adsc.201100934

    Article  CAS  Google Scholar 

  26. He, G.W., Shaoyang Univ. (Nat. Sci. Ed.), 2007, vol. 4, no. 1, pp. 90–92. https://doi.org/10.3969/j.issn.1672-7010.2007.01.025

  27. Dick, G.R., Frankhouser, A.D., Banerjee, A., and Kanan, M.W., Green. Chem., 2017, vol. 19, no. 13, pp. 2966–2972. https://doi.org/10.1039/c7gc01059a

    Article  CAS  Google Scholar 

  28. Xiao, D.J., Chant, E.D., Frankhouser, A.D., Chen, Y., Yau, A., Washton, N.M., and Kanan, M.W., Nat. Chem., 2019, vol. 11, no. 10, pp. 940–947. https://doi.org/10.1038/s41557-019-0313-y

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y.G., Guo, C.Y., Shen, J., Sun, Y.Q., Niu, Y.X., Li, P., Liu, G., and Wei, X.Y., J. CO2 Util., 2021, vol. 48, no. 1, p. 101524. https://doi.org/10.1016/j.jcou.2021.101524

    Article  CAS  Google Scholar 

  30. Banerjee, A., Dick, G.R., Yoshino, T., and Kanan, M.W., Nature, 2016, vol. 531, no. 7593, pp. 215–219. https://doi.org/10.1038/nature17185

    Article  CAS  PubMed  Google Scholar 

  31. Mae, K., Shindo, H., and Miura, K., Energy Fuels, 2001, vol. 15, no. 3, pp. 611–617. https://doi.org/10.1021/ef000177e

    Article  CAS  Google Scholar 

  32. Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, no. 10, pp. 1833–1840. https://doi.org/10.1063/1.1740588

    Article  CAS  Google Scholar 

  33. Marković, Z. and Marković, S., J. Chem. Inf. Model., 2008, vol. 48, no. 1, pp. 143–147. https://doi.org/10.1021/ci700296a

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (project No. 21706172), the Key Research and Development (R&D) Project of Shanxi Province (project no. 201903D321061), and Shanxi Province Natural Science Foundation (project no. 202203021221069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Yu-Gao Wang.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Liu, G., Sun, YQ. et al. Insight into Relationship between the Products Distribution and Molecular Properties in Carboxylation between Benzene Polycarboxylic Acids and CO2. Pet. Chem. (2024). https://doi.org/10.1134/S0965544124010018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544124010018

Keywords:

Navigation