Skip to main content
Log in

A Simple Method to Determine Low Metal Concentrations in Naphtha by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used in this study as an alternative analytical approach for measuring Al, Ca, Cu, Na, Ni, Si, Fe, P, V, and Zn in high-volatile petroleum products (naphtha) at the part per billion (ppb) sensitivity level. The distillation stage was intended for pre-concentrating metals by the matrix removal. Such multiplication of metal concentrations provided the possibility to measure them within the sensitivity range of the ICP-OES instrument. The reliability of such measurements was demonstrated for a wide concentration range of each metal, and the validation of the method was performed. Based on the standard deviations of nine successive measurements performed for 10 metals, the precision (repeatability) of the method for samples with concentrated metals was calculated. The values of this index (in ppb) were the following: 20.8 (Al), 20.4 (Ca), 13.7 (Na), 19.09 (Ni), 13.4 (Fe), 1.4 (P), 26.9 (V), and 45.15 (Zn). The reproducibility of the method was determined for nine measurements performed within several days. The results of recovery studies were excellent for the most part of the tested metals including Al (100.33%), Na (102%), and V (96.55%). The linearity test performed for calcium and silicon showed R = 0.999 for both elements. Depending on the standard deviation obtained in the linearity test, the limit of detection (LOD) range for all studied metals was determined to be between 2 and 10 ppb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kumar, P., Gacem, A., Ahmad, M.T., Kumar Yadav, V., Singh, S., Kumar Yadav, K., Alam, M., Dawane, V., Piplode, S., Maurya, P., Ahn, Y., Jeon, B.-H., and Cabral-Pinto, M., Front. Environ. Sci., 2022, vol. 10, pp. 1–23. https://doi.org/10.3389/fenvs.2022.949581

    Article  Google Scholar 

  2. Vale, M.G.R., Damin, I.C.F., Klassen, A., Silva, M.M., Welz, B., Silva, A.F., Lepri, F.G., Borges, D.L.G., and Heitmann, U., Microchem. J., 2004, vol. 77, no 2, pp. 131–40. https://doi.org/10.1016/j.microc.2004.02.007

    Article  CAS  Google Scholar 

  3. Poirier, L., Nelson, J., Leong, D., Berhane, L., Hajdu, P., and Lopez-Linares, F., Energy Fuels, 2016, vol. 30, no. 5, pp. 3783–3790. https://doi.org/10.1021/acs.energyfuels.5b02997

    Article  CAS  Google Scholar 

  4. Aguirre Pastor, M.Á., Canals, A., López-García, I., and Hernández-Córdoba, M., Talanta, 2020, vol. 220, p. 121395. https://doi.org/10.1016/j.talanta.2020.121395

    Article  CAS  Google Scholar 

  5. Chaves, E.S., Lepri, F.G., Silva, J.S.A., de Quadros, D.P.C., Saint’Pierre, T.D., and Curtius, A.J., J. Environ. Monit., 2008, vol. 10, pp. 1211–1216. https://doi.org/10.1039/b809501a

    Article  CAS  PubMed  Google Scholar 

  6. Cassella, R.J., Barbosa, B.A.R.S., Santelli, R.E., and Rangel, A.T., Anal. Bioanal. Chem., 2004, vol. 379, no. 1, pp. 66–71. https://doi.org/10.1007/s00216-004-2500-x

    Article  CAS  PubMed  Google Scholar 

  7. Björn, E. and Frech, W., Anal. Bioanal. Chem., 2003, vol. 376, no. 2, pp. 274–278. https://doi.org/10.1007/s00216-003-1874-5

  8. Nomngongo, P.N. and Ngila, J.C., Spectrochim. Acta, Part B: At. Spectrosc., 2014, vol. 98, pp. 54–59. https://doi.org/10.1016/j.sab.2014.06.001

  9. Kolling, L., Zmozinski, A.V., Rodrigues Vale, M.G., and Messias da Silva, M., Talanta, 2019, vol. 205, p. 120105. https://doi.org/10.1016/j.talanta.2019.06.105

  10. Akpoveta, O.V. and Osakwe, S.A., IOSR J. Appl. Chem., 2014, vol. 7, no. 6, pp. 1–2. https://doi.org/10.9790/5736-07610102

  11. Souza, R.M., da Silveira, C.L.P., and Aucélio, R.Q., Anal. Sci., 2004, vol. 20, no. 2, pp. 351–355. https://doi.org/10.2116/analsci.20.351

  12. Leite, C.C., de Jesus, A., Kolling, L., Ferrão, M.F., Samios, D., and Silva, M.M., Spectrochim. Acta, Part B: At. Spectrosc., 2018, vol. 142, pp. 62–67. https://doi.org/10.1016/j.sab.2018.01.018

  13. Carballo-Paradelo, S.,Soto-Ferreiro, R.M., AmorPastoriza, S., Carlosena-Zubieta, A., Fernandez-Fernandez, E., Lorenzo, S.M., Lopez-Mahia, P., and Rodriguez, D.P., At. Spectrosc., 2009, vol. 30, no. 4, pp. 129–138.

    CAS  Google Scholar 

  14. Brandão, G.P., De Campos, R.C., and Luna, A.S., Spectrochim. Acta: Part B. At. Spectrosc., 2005, vol. 60, no. 5, pp. 625–631. https://doi.org/10.1016/j.sab.2005.02.026

    Article  CAS  Google Scholar 

  15. Meeravali, N.N. and Kumar, S.J., J. Anal. At. Spectrom., 2001, vol. 16, no. 5, pp. 527–532. https://doi.org/10.1039/b100032m

    Article  CAS  Google Scholar 

  16. Saint’Pierre, T.D., Dias, L.F., Maia, S.M., and Curtius, A.J., Spectrochim. Acta: Part B. At. Spectrosc., 2004, vol. 59, no. 4, pp. 551–558. https://doi.org/10.1016/j.sab.2003.12.025

    Article  CAS  Google Scholar 

  17. Duyck, C., Miekeley, N., Porto da Silveira, C.L., Aucélio, R.Q., Campos, R.C., Grinberg, P., and Brandão, G.P., Spectrochim. Acta: Part B. At. Spectrosc., 2007, vol. 62, no. 9, pp. 939–951. https://doi.org/10.1016/j.sab.2007.04.013

  18. Saint’Pierre, T.D., Dias, L.F., Pozebon, D., Aucélio, R.Q., Curtius, A.J., and Welz, B., Spectrochim. Acta: Part B. At. Spectrosc., 2002, vol. 57, no. 12, pp. 1991–2001. https://doi.org/10.1016/S0584-8547(02)00202-1

  19. Wang, T., Jia, X., and Wu, J., J. Pharm. Biomed. Anal., 2003, vol. 33, no. 4, pp. 639–646. https://doi.org/10.1016/S0731-7085(03)00357-1

  20. Aucélio, R.Q., Doyle, A., Pizzorno, B.S., Tristão, M.L.B., and Campos, R.C., Microchem. J., 2004, vol. 78, no. 1, pp. 21–26. https://doi.org/10.1016/j.microc.2004.02.018

  21. Silva, I.A., Campos, R.C., Curtius, A.J., and Sella, S.M., J. Anal. At. Spectrom., 1993, vol. 8, no. 5, pp. 749–754. https://doi.org/10.1039/ja9930800749

    Article  CAS  Google Scholar 

  22. Calixto de Campos, R., Reis dos Santos, H., and Grinberg, P., Spectrochim. Acta: Part B. At. Spectrosc., 2002, vol. 57, no. 1, pp. 15–28. https://doi.org/10.1016/S0584-8547(01)00362-7

  23. Teixeira, L.S.G., Rocha, R.B.S., Sobrinho, E.V., Guimarães, P.R.B., Pontes, L.A.M., and Teixeira, J.S.R., Talanta, 2007, vol. 72, no. 3, pp. 1073–1076. https://doi.org/10.1016/j.talanta.2006.12.042

  24. American Standard Test Method, Standard Test Method for Determination of Trace Elements in Middle Distillate Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), 2021. https://www.astm.org/d7111-16r21.html

  25. Kuselman, I. and Fajgelj, A., Pure Appl. Chem., 2010, vol. 82, no. 5, pp. 1099–1135. https://doi.org/10.1351/PAC-REP-09-08-15

Download references

ACKNOWLEDGMENTS

The authors would like to thank Rochem Company for providing naphtha samples used in the study. The authors would also like to thank Eng: Amr Bahig, Chairman of the Company’s Board of Directors, and Eng: Tarek Fahmy, the chemical consultant of the company, for their good cooperation and support.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsayed M. Elnaggar.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.S., Ashmawy, A.M., Khalil, H.F. et al. A Simple Method to Determine Low Metal Concentrations in Naphtha by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Pet. Chem. (2024). https://doi.org/10.1134/S0965544123110063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544123110063

Keywords:

Navigation