Skip to main content
Log in

Oxidation of Organic Substrates with Sodium Hypochlorite (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A review of studies in the field of oxidation of organic substrates with sodium hypochlorite, published in the past 15–20 years, is presented. Oxidation of primary and secondary alcohols, epoxidation of olefins, oxidative desulfurization, and nitrogen oxide oxidation are described. A comparative analysis of various catalytic systems used in this field is made. Industrial uses of sodium hypochlorite, in particular, for wastewater treatment, are described. The main directions of using sodium hypochlorite and the related prospects and problems are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Matienko, L.I. and Mosolova, L.A., Petrol. Chem., 2007, vol. 47, pp. 39–48. https://doi.org/10.1134/S0965544107010057

    Article  Google Scholar 

  2. Potekhin, V.M. and Potekhin, V.V., Osnovy teorii khimicheskikh protsessov tekhnologii organicheskikh veshchestv i neftepererabotki (Foundations of the Theory of Chemical Processes in the Technology of Organic Substances and Oil Refining), St. Petersburg: Lan’, 2014.

  3. Fozilov, Kh.S.U., Sharipov, M.Z., Fozilov, S.F., Mavlonov, B.A., and Gaibullaeva, A.F., Universum: Tekh. Nauki, 2021, vol. 11, no. 92, pp. 97–100. https://doi.org/10.32743/UniTech.2021.92.11.12559

    Article  Google Scholar 

  4. Russo, V., Tesser, R., Santacesaria, E., and Di Serio, M., Ind. Eng. Chem. Res., 2013, vol. 52, no. 3, pp. 1168–1178. https://doi.org/10.1021/ie3023862

    Article  CAS  Google Scholar 

  5. Behin, J., Akbari, A., Mahmoudi, M., and Khajeh, M., Water Res., 2017, vol. 121, pp. 120–128. https://doi.org/10.1016/j.watres.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  6. Arterburn, J.B., Tetrahedron, 2001, vol. 57, no. 49, pp. 9765–9788.

    Article  CAS  Google Scholar 

  7. Ponedel’kina, I.Yu., Khaibrakhmanova, E.A., and Odinokov, V.N., Russ. Chem. Rev., 2010, vol. 79, no. 1, p. 63. https://doi.org/10.1070/RC2010v079n01ABEH004074

    Article  CAS  Google Scholar 

  8. Okada, T., Asawa, T., Sugiyama, Y., Kirihara, M., Iwai, T., and Kimura, Y., Synlett, 2014, vol. 25, no. 4, pp. 596–598. https://doi.org/10.1055/s-0033-1340483

    Article  CAS  Google Scholar 

  9. Kirihara, M., Okada, T., Sugiyama, Y., Akiyoshi, M., Matsunaga, T., and Kimura, Y., Org. Process Res. Dev., 2017, vol. 21, no. 12, pp. 1925–1937. https://doi.org/10.1021/acs.oprd.7b00288

    Article  CAS  Google Scholar 

  10. Sharma, Y., Moolya, S., Joshi, R.A., and Kulkarni, A.A., React. Chem. Eng., 2017, vol. 2, no. 3, pp. 304–308. https://doi.org/10.1039/C6RE00225K

    Article  CAS  Google Scholar 

  11. Sheldon, R.A., Arends, I.W., Ten Brink, G.J., and Dijksman, A., Acc. Chem. Res., 2002, vol. 35, no. 9, pp. 774–781. https://doi.org/10.1021/ar010075n

    Article  CAS  PubMed  Google Scholar 

  12. Dijksman, A., Arends, I.W.C.E., and Sheldon, R.A., Chem. Commun., 2000, no. 4, pp. 271–272. https://doi.org/10.1039/A909690F

    Article  Google Scholar 

  13. Vanoye, L., Yehouenou, L., Philippe, R., de Bellefon, C., Fongarland, P., and Favre-Réguillon, A., React. Chem. Eng., 2018, vol. 3, no. 2, pp. 188–194. https://doi.org/10.1039/C7RE00155J

    Article  CAS  Google Scholar 

  14. Janssen, M.H.A., Castellana, J.F.C., Jackman, H., Dunn, P.J., and Sheldon, R.A., Green Chem., 2011, vol. 13, no. 4, pp. 905–912. https://doi.org/10.1039/C0GC00684J

    Article  CAS  Google Scholar 

  15. Jana, S., Thomas, J., and Gupta, S.S., Inorg. Chim. Acta, 2019, vol. 486, pp. 476–482. https://doi.org/10.1016/j.ica.2018.10.067

    Article  CAS  Google Scholar 

  16. Grill, J.M., Ogle, J.W., and Miller, S.A., J. Org. Chem., 2006, vol. 71, no. 25, pp. 9291–9296. https://doi.org/10.1021/jo0612574

    Article  CAS  PubMed  Google Scholar 

  17. Bright, Z.R., Luyeye, C.R., Morton, A.S.M., Sedenko, M., Landolt, R.G., Bronzi, M.J., Bohovic, K.M., Gonser, M.W.A., Lapainis, T.E., and Hendrickson, W.H., J. Org. Chem., 2005, vol. 70, no. 2, pp. 684–687. https://doi.org/10.1021/jo0490651

    Article  CAS  PubMed  Google Scholar 

  18. Klawonn, M., Bhor, S., Mehltretter, G., Döbler, C., Fischer, C., and Beller, M., Adv. Synth. Catal., 2003, vol. 345, no. 3, pp. 389–392. https://doi.org/10.1002/adsc.200390044

    Article  CAS  Google Scholar 

  19. Crawford, K., Rautenstrauch, V., and Uijttewaal, A., Synlett, 2001, vol. 2001, no. 07, pp. 1127–1128. https://doi.org/10.1055/s-2001-15149

    Article  Google Scholar 

  20. Kelly, D.R. and Nally, J., Tetrahedron Lett., 1999, vol. 40, no. 16, pp. 3251–3254. https://doi.org/10.1016/S0040-4039(99)00376-7

    Article  CAS  Google Scholar 

  21. Zotov, Yu.L., Butakova, N.A., and Biryukova, A.A., Mezhdunar. Zh. Prikl. Fundam. Issled., 2013, no. 7, pp. 194–194.

    Google Scholar 

  22. Zhang, W., Zheng, B., Jin, X., Cheng, H., and Liu, J., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 17, pp. 14389–14393. https://doi.org/10.1021/acssuschemeng.9b04059

    Article  CAS  Google Scholar 

  23. Kuźniarska-Biernacka, I., Silva, A.R., Ferreira, R., Carvalho, A.P., Pires, J., de Carvalho, M.B., Freire, C., and de Castro, B., New J. Chem., 2004, vol. 28, no. 7, pp. 853–858. https://doi.org/10.1039/B401830C

    Article  Google Scholar 

  24. Silva, A.R., Freire, C., and de Castro, B., New J. Chem., 2004, vol. 28, no. 2, pp. 253–260. https://doi.org/10.1039/B309125B

    Article  Google Scholar 

  25. Maity, N.C., Abdi, S.H., Kureshy, R.I., Noor-ul, H.K., Suresh, E., Dangi, G.P., and Bajaj, H.C., J. Catal., 2011, vol. 277, no. 1, pp. 123–127. https://doi.org/10.1016/j.jcat.2010.10.002

    Article  CAS  Google Scholar 

  26. Martinez, A., Hemmert, C., and Meunier, B., J. Catal., 2005, vol. 234, no. 2, pp. 250–255. https://doi.org/10.1016/j.jcat.2005.06.021

    Article  CAS  Google Scholar 

  27. Ohkuma, T., Noyori, R., Jacobsen, E.N., Pfaltz, A., and Yamamoto, H., in Comprehensive Asymmetric Catalysis, Jacobsen, E.N., Pfaltz, A., and Yamamoto, H., Eds., Berlin: Springer, 1999, pp. 199–246.

  28. Katsuki, T., Coord. Chem. Rev., 1995, vol. 140, pp. 189–214. https://doi.org/10.1016/0010-8545(94)01124-T

    Article  CAS  Google Scholar 

  29. Amarasekara, A.S., McNeal, I., Murillo, J., Green, D., and Jennings, A., Catal. Commun., 2008, vol. 9, no. 14, pp. 2437–2440. https://doi.org/10.1016/j.catcom.2008.06.009

    Article  CAS  Google Scholar 

  30. Teixeira, J., Silva, A.R., Branco, L.C., Afonso, C.A., and Freire, C., Inorg. Chim. Acta, 2010, vol. 363, no. 13, pp. 3321–3329. https://doi.org/10.1016/j.ica.2010.06.018

    Article  CAS  Google Scholar 

  31. Zhao, R., Tang, Y., Wei, S., Xu, X., Shi, X., and Zhang, G., React. Kinet., Mech. Catal., 2012, vol. 106, no. 1, pp. 37–47. https://doi.org/10.1007/s11144-011-0403-3

    Article  CAS  Google Scholar 

  32. Page, P.C.B., Parker, P., Buckley, B.R., Rassias, G.A., and Bethell, D., Tetrahedron, 2009, vol. 65, no. 15, pp. 2910–2915. https://doi.org/10.1016/j.tet.2009.02.007

    Article  CAS  Google Scholar 

  33. Han, D., Li, Y., Han, Y.P., Zhang, H.Y., Zhang, Y., and Zhao, J., Mol. Catal., 2022, vol. 524, article ID 112268. https://doi.org/10.1016/j.mcat.2022.112268

  34. Yoo, M.S., Kim, D.G., Ha, M.W., Jew, S.S., Park, H.G., and Jeong, B.S., Tetrahedron Lett., 2010, vol. 51, no. 42, pp. 5601–5603. https://doi.org/10.1016/j.tetlet.2010.08.056

    Article  CAS  Google Scholar 

  35. Lygo, B. and To, D.C.M., Tetrahedron Lett., 2001, vol. 42, no. 7, pp. 1343–1346. https://doi.org/10.1016/S0040-4039(00)02208-5

    Article  CAS  Google Scholar 

  36. Kostic, N.A., Milosavljevic, M.M., Pecic, L.S., Babic, S.Z., Milosavljevic, B.L., Milosevic, D.L., and Krstić, B.V., Iran. J. Chem. Eng., 2018, vol. 15, no. 1, pp. 73–88.

    Google Scholar 

  37. Khurana, J.M. and Nand, B., Can. J. Chem., 2010, vol. 88, no. 9, pp. 906–909. https://doi.org/10.1139/V10-060

    Article  CAS  Google Scholar 

  38. Okada, T., Matsumuro, H., Kitagawa, S., Iwai, T., Yamazaki, K., Kinoshita, Y., and Kirihara, M., Synlett, 2015, vol. 26, no. 18, pp. 2547–2552. https://doi.org/10.1055/s-0035-1560482

    Article  CAS  Google Scholar 

  39. Li, J., Chen, H., and Zare, R.N., J. Org. Chem., 2021, vol. 86, no. 7, pp. 5011–5015. https://doi.org/10.1021/acs.joc.0c02942

    Article  CAS  PubMed  Google Scholar 

  40. Yansheng, C., Changping, L., Qingzhu, J., Qingshan, L., Peifang, Y., Xiumei, L., and Welz-Biermann, U., Green Chem., 2011, vol. 13, no. 5, pp. 1224–1229. https://doi.org/10.1039/C0GC00745E

    Article  Google Scholar 

  41. Subhan, S., Muhammad, Y., Sahibzada, M., Subhan, F., and Tong, Z., Energy Fuels, 2019, vol. 33, no. 9, pp. 8423–8439. https://doi.org/10.1021/acs.energyfuels.9b01950

    Article  CAS  Google Scholar 

  42. Subhan, S., Yaseen, M., Ahmad, B., Tong, Z., Subhan, F., Ahmad, W., and Sahibzada, M., J. Environ. Chem. Eng., 2021, vol. 9, no. 3, article ID 105179. https://doi.org/10.1016/j.jece.2021.105179

  43. Li, A., Song, H., Meng, H., Lu, Y., and Li, C., Chem. Eng. J., 2020, vol. 380, article ID 122453. https://doi.org/10.1016/j.cej.2019.122453

  44. Yaseen, M., Khattak, S., Ullah, S., Subhan, F., Ahmad, W., Shakir, M., and Tong, Z., Chem. Eng. Res. Des., 2022, vol. 179, pp. 107–118. https://doi.org/10.1016/j.cherd.2022.01.018

    Article  CAS  Google Scholar 

  45. Yaseen, M., Subhan, S., Subhan, F., Rahman, A.U., Naeem, A., Ahmad, Z., and Tong, Z., Fuel, 2022, vol. 321, article ID 124017. https://doi.org/10.1016/j.fuel.2022.124017

  46. Salem, H.M. and Abdelrahman, A.A., J. Alloys Compd., 2023, vol. 956, article ID 170275. https://doi.org/10.1016/j.jallcom.2023.170275

  47. Ahmad, M., Aslam, S., Subhan, F., Zhen, L., Yan, Z., Yaseen, M., and Nazir, A., Fuel, 2023, vol. 346, article ID 128372. https://doi.org/10.1016/j.fuel.2023.128372

  48. Gevorgyan, K.P. and Polikarpova, P.D., Petrol. Chem., 2023, vol. 63, no. 4, pp. 413–420. https://doi.org/10.1134/S0965544123030131

    Article  CAS  Google Scholar 

  49. Li, W. and Cho, E.H., Energy Fuels, 2005, vol. 19, no. 2, pp. 499–507. https://doi.org/10.1021/ef0400767

    Article  CAS  Google Scholar 

  50. Habibi, Y. and Vignon, M.R., Cellulose, 2008, vol. 15, pp. 177–185. https://doi.org/10.1007/s10570-007-9179-z

    Article  CAS  Google Scholar 

  51. Kato, Y., Matsuo, R., and Kaminaga, J., Cellulose Comm., 2002, vol. 9, no. 4, pp. 221–224.

    CAS  Google Scholar 

  52. Kato, Y., Kaminaga, J.I., Matsuo, R., and Isogai, A., J. Polym. Environ., 2005, vol. 13, pp. 261–266. https://doi.org/10.1007/s10924-005-4760-8

    Article  CAS  Google Scholar 

  53. Kato, Y., Habu, N., Yamaguchi, J., Kobayashi, Y., Shibata, I., Isogai, A., and Samejima, M., Cellulose, 2002, vol. 9, pp. 75–81. https://doi.org/10.1023/A:1015877416414

    Article  CAS  Google Scholar 

  54. Fraschini, C., Chauve, G., and Bouchard, J., Cellulose, 2017, vol. 24, pp. 2775–2790. https://doi.org/10.1007/s10570-017-1319-5

    Article  CAS  Google Scholar 

  55. Rubina, M.S., Pigaleva, M.A., Naumkin, A.V., and Gromovykh, T.I., Dokl. Phys. Chem., 2020, vol. 493, pp. 127–131. https://doi.org/10.1134/S0012501620080023

    Article  CAS  Google Scholar 

  56. Gomez-Bujedo, S., Fleury, E., and Vignon, M.R., Biomacromolecules, 2004, vol. 5, no. 2, pp. 565–571. https://doi.org/10.1021/bm034405y

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, J., Chen, H., Liu, L., Yu, J., Fan, Y., Saito, T., and Isogai, A., ACS Sustain. Chem. Eng., 2020, vol. 8, no. 37, pp. 14198–14206.

    Article  CAS  Google Scholar 

  58. Coseri, S., Biliuta, G., and Simionescu, B.C., Polym. Chem., 2018, vol. 9, no. 8, pp. 961–967. https://doi.org/10.1039/C7PY01710C

    Article  CAS  Google Scholar 

  59. Patankar, S.C. and Renneckar, S., Green Chem., 2017, vol. 19, no. 20, pp. 4792–4797. https://doi.org/10.1039/C7GC02383A

    Article  CAS  Google Scholar 

  60. Matsuki, S., Kayano, H., Takada, J., Kono, H., Fujisawa, S., Saito, T., and Isogai, A., ACS Sustain. Chem. Eng., 2020, vol. 8, no. 48, pp. 17800–17806. https://doi.org/10.1021/acssuschemeng.0c06515

    Article  CAS  Google Scholar 

  61. Polubot’ko, O.V., Ospankulova, G.Kh., Baikenov, A.O., Sarbasova, G.T., and Bulashev, B.K., Pishcha. Ekol. Kachestvo, 2017, pp. 118–122.

  62. Wang, Y.J. and Wang, L., Carbohydr. Polym., 2003, vol. 52, no. 3, pp. 207–217. https://doi.org/10.1016/S0144-8617(02)003041

    Article  CAS  Google Scholar 

  63. Vanier, N.L., da Rosa Zavareze, E., Pinto, V.Z., Klein, B., Botelho, F.T., Dias, A.R.G., and Elias, M.C., Food Chem., 2012, vol. 131, no. 4, pp. 1255–1262. https://doi.org/10.1016/j.foodchem.2011.09.114

    Article  CAS  Google Scholar 

  64. Sánchez-Rivera, M.M., García-Suárez, F.J.L., Del Valle, M.V., Gutierrez-Meraz, F., and Bello-Pérez, L.A., Carbohydr. Polym., 2005, vol. 62, no. 1, pp. 50–56. https://doi.org/10.1016/j.carbpol.2005.07.005

    Article  CAS  Google Scholar 

  65. Rebenok, E.V., Legk. Tekstil’n. Promst., 2006, pp. 76–77.

  66. Vanier, N.L., El Halal, S.L.M., Dias, A.R.G., and da Rosa Zavareze, E., Food Chem., 2017, vol. 221, pp. 1546–1559. https://doi.org/10.1016/j.foodchem.2016.10.138

    Article  CAS  PubMed  Google Scholar 

  67. Chen, L., Hsu, C. H., and Yang, C.L., Environ. Prog., 2005, vol. 24, no. 3, pp. 279–288. https://doi.org/10.1002/ep.10075

    Article  CAS  Google Scholar 

  68. Han, Z., Yang, S., Pan, X., Zhao, D., Yu, J., Zhou, Y., and Yan, Z., Energy Fuels, 2017, vol. 31, no. 3, pp. 3047–3054. https://doi.org/10.1021/acs.energyfuels.6b03062

    Article  CAS  Google Scholar 

  69. Song, X., Jiang, W., and Zhang, J., Chemosphere, 2021, vol. 285, article ID 131526. https://doi.org/10.1016/j.chemosphere.2021.131526

  70. Michałowicz, J., Duda, W., and Stufka-Olczyk, J., Chemosphere, 2007, vol. 66, no. 4, pp. 657–663. https://doi.org/10.1016/j.chemosphere.2006.07.083

    Article  CAS  PubMed  Google Scholar 

  71. Sorlini, S. and Gialdini, F., Water Res., 2010, vol. 44, no. 19, pp. 5653–5659. https://doi.org/10.1016/j.watres.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  72. Petrov, V.F. and Petrov, S.V., Patent RU 2615023, 2017.

  73. Kondrat’ev, A.E., Patent RU 2748040 C1, 2021.

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 22-79-00063, https://rscf.ru/project/22-79-00063/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Domashkina.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domashkina, P.D., Gevorgyan, K.P. & Akopyan, A.V. Oxidation of Organic Substrates with Sodium Hypochlorite (A Review). Pet. Chem. 63, 1253–1273 (2023). https://doi.org/10.1134/S0965544123110051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123110051

Keywords:

Navigation