Skip to main content
Log in

Рt/SAPO-11 Catalytic Systems Differing in Acidity and Secondary Pore Structure in n-Hexadecane Hydroisomerization

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

SAPO-11 molecular sieve samples differing in the acid properties, crystal morphology and size, and secondary pore structure characteristics were obtained by crystallization of reaction gels with the SiO2/Al2O3 molar ratios of 0.1 and 0.3, prepared using aluminum isopropoxide or boehmite as an aluminum source. Platinum (0.5 wt %) was deposited onto the molecular sieves prepared, and the catalytic properties of the resulting samples in n-hexadecane hydroisomerization were studied. The hydrocarbon conversion on these samples varies from 76.8 to 87.7 wt %, and the isoparaffin formation selectivity, from 76.7 to 91.2 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akhmedov, V.M. and Al-Khowaiter, S.H., Catal. Rev., 2007, vol. 49, pp. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  2. Wang, W., Wu, W., and Liu, C.-J., Catal. Sci. Technol., 2019, vol. 9, no. 16, pp. 4162−4187. https://doi.org/10.1039/C9CY00499H

    Article  CAS  Google Scholar 

  3. Deldari, Н., Appl. Catal. A: General, 2005, vol. 293, pp. 1–10. https://doi.org/10.1016/j.apcata.2005.07.008

    Article  CAS  Google Scholar 

  4. Database of Zeolite Structure. http://www.iza-structure.org/databases

  5. Barthomeuf, D., Zeolites, 1994, vol. 14, no. 6, pp. 394–401. https://doi.org/10.1016/0144-2449(94)90164-3

    Article  CAS  Google Scholar 

  6. Potter, M.E., ACS Catal., 2020, vol. 10, pp. 9758–9789. https://doi.org/10.1021/acscatal.0c02278

    Article  CAS  Google Scholar 

  7. Bértolo, R., Silva, J.M., Ribeiro, M.F., Martins, A., and Fernandes, A., Appl. Catal. A: General, 2017, vol. 542, pp. 28–37. https://doi.org/10.1016/j.apcata.2017.05.010

    Article  CAS  Google Scholar 

  8. Hartmann, M. and Elangovan, S.P., Advances in Nanoporous Materials, Elsevier, 2010, vol. 1, pp. 237–312. https://doi.org/10.1016/S1878-7959(09)00104-2

  9. Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, no. 8, pp. 852–870. https://doi.org/10.1134/S096554412108003X

    Article  CAS  Google Scholar 

  10. Yang, Z., Li, J., Liu, Y., and Liu, C., J. Energy Chem., 2017, vol. 26, pp. 688–694. https://doi.org/10.1016/j.jechem.2017.02.002

    Article  Google Scholar 

  11. Wang, X., Zhang, W., Guo, Sh., Zhao, L., and Xiang, H., J. Braz. Chem. Soc., 2013, vol. 24, pp. 1180–1187. https://doi.org/10.5935/0103-5053.20130152

    Article  CAS  Google Scholar 

  12. Fernandes, A., Ribeiro, F., Lourenço, J., and Gabelica, Z., Stud. Surf. Sci. Catal., 2008, vol. 174, pp. 281–284. https://doi.org/10.1016/S0167-2991(08)80197-8

    Article  Google Scholar 

  13. Guo, L., Fan, Y., Bao, X., Shi, G., and Liu, H., J. Catal., 2013, vol. 301, pp. 162–173. https://doi.org/10.1016/j.jcat.2013.02.001

    Article  CAS  Google Scholar 

  14. Chen, B. and Huang, Y., Micropor. Mesopor. Mater., 2009, vol. 123, pp. 71–77. https://doi.org/10.1016/j.micromeso.2009.03.025

    Article  CAS  Google Scholar 

  15. Agliullin, M.R., Kolyagin, Yu.G., Serebrennikov, D.V., Grigor’eva, N.G., Dmitrenok, A.S., Maistrenko, V.N., Dib, E., Mintova, S., and Kutepov, B.I., Micropor. Mesopor. Mater., 2022, vol. 338, article 111962. https://doi.org/10.1016/j.micromeso.2022.111962

  16. Agliullin, M.R., Yakovenko, R.E., Kolyagin, Y.G., Serebrennikov, D.V., Vildanov, F.S., Prosochkina, T.R., and Kutepov, B.I., Gels, 2022, vol. 8, article 142. https://doi.org/10.3390/gels8030142

  17. Tamura, M., Shimizu, K., and Satsuma, A., Appl. Catal. A: General, 2012, vols. 433–434, pp. 135–145. https://doi.org/10.1016/j.apcata.2012.05.008

    Article  CAS  Google Scholar 

  18. Yadav, R. and Sakthivel, A., Appl. Catal. A: General, 2014, vol. 481, pp. 143–160. https://doi.org/10.1016/j.apcata.2014.05.010

    Article  CAS  Google Scholar 

  19. Höchtl, M., Jentys, A., and Vinek, H., J. Catal., 2000, vol. 190, no. 2, pp. 419–432. https://doi.org/10.1006/jcat.1999.2761

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-13-20058, https://rscf.ru/project/22-13-20058/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Agliullin.

Ethics declarations

K.I. Dement’ev is the Deputy Editor-in-Chief of Neftekhimiya/Petroleum Chemistry journal. The other authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agliullin, M.R., Serebrennikov, D.V., Khazipova, A.N. et al. Рt/SAPO-11 Catalytic Systems Differing in Acidity and Secondary Pore Structure in n-Hexadecane Hydroisomerization. Pet. Chem. 63, 1087–1096 (2023). https://doi.org/10.1134/S096554412308008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412308008X

Keywords:

Navigation