Skip to main content
Log in

Effects of Nickel Promotion on the Catalytic Performance of In Situ Synthesized Suspensions of Molybdenum Disulfide Nanoparticles

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The study investigates the activity of in situ synthesized suspensions of nickel-promoted molybdenum disulfide particles in the hydroconversion of crude oil vacuum residues. The catalyst suspensions were prepared in situ from water-in-oil emulsions of aqueous solutions of precursors, specifically ammonium paramolybdate and nickel nitrate. The catalytic tests were carried out in a flow-type reactor at 430°C, WHSV 1 h–1, and 7 MPa hydrogen, with the Mo:Ni atomic ratio in the catalyst particles ranging from 1:0.022 to 1:1.43. The XRD of the toluene-insoluble solids (TIS) extracted from the hydrogenates identified sulfides such as MoS2, Ni3S4, and Ni3S2 in the dispersed catalyst. Increasing the nickel content in the catalyst favored its hydrogenation activity, which was indicated by an enhancement in the feed conversion, an increase in the content of paraffins and naphthenes, and a decrease in the sulfur content in the distillates and TIS derived from the hydrogenates. The conversion of high-molecular-weight feed components (resins, asphaltenes, and heavy aromatics) was enhanced as a result of the nickel promotion of the dispersed MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Khadzhiev, S.N., Petrol. Chem., 2016, vol. 56, no. 6, pp. 465–479. https://doi.org/10.1134/S0965544116060050

    Article  CAS  Google Scholar 

  2. Kang, K.H., Tae, K.G., Park, S., Seo, P.W., Seo, H., and Lee, C.W., J. Ind. Eng. Chem., 2019, vol. 76, pp. 1–16. https://doi.org/10.1016/j.jiec.2019.03.022

    Article  CAS  Google Scholar 

  3. Kapustin, V., Chernysheva, E., and Khakimov, R., Processes, 2021, vol. 9, no. 3, pp. 500–523 https://doi.org/10.3390/pr9030500

    Article  CAS  Google Scholar 

  4. Chianelli, R.R., Siadati, M.H., De la Rosa, M.P., Berhault, G., Wilcoxon, J.P., Bearden, R.Jr., and Abrams, B.L., Cat. Rev., 2006, vol. 48, pp. 1–41. https://doi.org/10.1080/01614940500439776

    Article  CAS  Google Scholar 

  5. Kim, K.D. and Lee, Y.-K., J. Catal., 2019, vol. 369, pp. 111–121. https://doi.org/10.1016/j.jcat.2018.10.013

    Article  CAS  Google Scholar 

  6. Qian, W., Hachiyaa, Y., Wang, D., Hirabayashi, K., Ishihara, A., Kabe, T., Okazaki, H., and Adachi, M., Appl. Catal. A: General, 2002, vol. 227, pp. 19–28. https://doi.org/10.1016/S0926-860X(01)00919-X

    Article  CAS  Google Scholar 

  7. Kadiev, Kh.M., Gyul’maliev, A.M., Kadieva, M.Kh., and Khadzhiev, S.N., Petrol. Chem., 2018, vol. 58, no. 8, pp. 638–645. https://doi.org/10.1134/S0965544118080091

    Article  CAS  Google Scholar 

  8. Bernard, F., Peureux, S., Elmouchnino, J., Perchec, P.L., Vrinat, M., and Morel, F., Energy Fuel., 1994, vol. 8, no. 3, pp. 588–592. https://doi.org/10.1021/ef00045a012

    Article  Google Scholar 

  9. Jeon, S.G., Na, J.-G., Ko, C.H., Yi, K.B., Rho, N.S., and Park, S.B., Energy Fuel., 2011, vol. 25, pp. 4256–4260. https://doi.org/10.1021/ef200703t

    Article  CAS  Google Scholar 

  10. Nguyen, T.S., Tayakout-Fayolle, M., Lacroix, M., Gotteland, D., Aouine, M., Bacaud, R., Afanasiev, P., and Geantet, Ch., Fuel, 2015, vol. 160, pp. 50–56. https://doi.org/10.1016/j.fuel.2015.07.012

    Article  CAS  Google Scholar 

  11. Vutolkina, A., Glotov, A., Baygildin, I., Akopyan, A., Talanova, M., Terenina, M., Maximov, A., and Karakhanov, E., Pure Appl. Chem., 2020, vol. 92(6), pp. 949–966. https://doi.org/10.1515/pac-2019-1115

    Article  CAS  Google Scholar 

  12. Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Petrol. Chem., 2013, vol. 53, no. 6, pp. 374–382. https://doi.org/10.1134/S0965544113060091

    Article  CAS  Google Scholar 

  13. Maksimov, А.L., Zekel’, L.A., Kadieva, M.Kh., Gyul’maliev, A.M., Dandaev, A.U., Batov, A.E., Visaliev, M.Ya., and Kadiev, Kh.M., Petrol. Chem., 2019, vol. 59, pp. 968–974. https://doi.org/10.1134/S096554411909010XА

    Article  CAS  Google Scholar 

  14. Kadiev, Kh.M., Zekel’, L.A., Kadieva, M.Kh., Gyul’maliev, A.M., Batov, A.E., Visaliev, M.Ya., Dandaev, A.U., Magomadov, E.E., and Kubrin, N.A., Petrol. Chem., 2020, vol. 60, no. 10, pp. 1154–1163. https://doi.org/10.1134/S0965544120100059

    Article  CAS  Google Scholar 

  15. Tankov, I., Stratiev, D., Shishkova, I., Dinkov, R., Sharafutdinov, I., Nikolova, R., Veli, A., Mitkova, M., Yordanov, D., Rudnev, N., Stanulov, K., and Toteva, V., Oxidation Commun., 2017, vol. 40, no. 3, pp. 1191–1208.

    CAS  Google Scholar 

  16. Joshi, J.B., Pandit, A.B., Kataria, K.L., Kulkarni, R.P., Sawarkar, A.N., Tandon, D., Ram, Y., and Kumar, M.M., Ind. Eng. Chem. Res., 2008, vol. 47, pp. 8960–8988. https://doi.org/10.1021/ie0710871

    Article  CAS  Google Scholar 

  17. Rahimi, P., Dettman, H., Nowlan, V., and DelBianco, A., Prep. Div. Petr. Chem., Am. Chem. Soc. National Meeting, San Francisco, CA, 1997, pp. 23–26.

Download references

Funding

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Batov.

Ethics declarations

Kh.M. Kadiev, a co-author, is an editorial board member at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zekel, L.A., Batov, A.E., Visaliev, M.Y. et al. Effects of Nickel Promotion on the Catalytic Performance of In Situ Synthesized Suspensions of Molybdenum Disulfide Nanoparticles. Pet. Chem. 63, 1061–1068 (2023). https://doi.org/10.1134/S0965544123060300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060300

Keywords:

Navigation