Skip to main content
Log in

Fischer–Tropsch Synthesis over Bifunctional Catalysts Based on HBeta Zeolite

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A number of catalysts were synthesized from a composite mixture consisting of a metal component (specifically, a Co–Al2O3/SiO2 catalyst in an amount of 20–40% for the synthesis of long-chain hydrocarbons), an acid component (Beta zeolite in the H-form, 20–50%), and a binder (boehmite). The catalysts were characterized by XRD, low-temperature argon adsorption/desorption, and TPR, and tested in Fischer–Tropsch synthesis at 2.0 MPa, 240°C, and GHSV 1000 h–1. The activity and selectivity of the catalysts were compared, and the composition of the synthetic products was investigated. The content of the zeolite component was found to be critical to the cracking and isomerization activity of the catalysts. It was further shown that the ratio between the active components correlates with the C5+ productivity and the selectivity towards fuel-range hydrocarbons. The catalysts with Co–Al2O3/SiO2 to HBeta ratios of 0.75 and 1.3 were found to be optimal for high-performance synthesis of gasoline-range (C5–C10) and diesel-range (C11–C18) hydrocarbons, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Tomasek, S., Lónyi, F., Valyon, J., and Hancsók, J., Energy Convers. Manag., 2020, vol. 213, article 112775. https://doi.org/10.1016/j.enconman.2020.112775

  2. Martinelli, M., Gnanamani, M.K., Le Viness, S., Jacobs, G., and Shafer, W.D., Appl. Catal. A: General, 2020, vol. 608, article 117740. https://doi.org/10.1016/j.apcata.2020.117740

  3. van Steen, E., Claeys, M., Möller, K.P., Nabaho, D., Appl. Catal. A: General, 2018, vol. 549, pp. 51–59. https://doi.org/10.1016/j.apcata.2017.09.019

    Article  CAS  Google Scholar 

  4. Eliseev, O.L., Savost’yanov, A.P., Sulima, S.I., and Lapidus, A.L., Mendeleev Commun., 2018, vol. 28, pp. 345–351. https://doi.org/10.1016/j.mencom.2018.07.001

    Article  CAS  Google Scholar 

  5. Gholami, Z., Tišler, Z., and Rubáš, V., Catal. Rev., 2021, vol. 63, pp. 512–59. https://doi.org/10.1080/01614940.2020.1762367

    Article  CAS  Google Scholar 

  6. Khodakov, A.Y., Chu, W., and Fongarland, P., Chem. Rev., 2007, vol. 107, pp. 1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  7. Vogel, A.P., van Dyk, B., and Saib, A.M., Catal. Today, 2016, vol. 259, pp. 323–330. https://doi.org/10.1016/j.cattod.2015.06.018

    Article  CAS  Google Scholar 

  8. Ma, W., Kang, J., Jacobs, G., and Hopps, S.D., Reactions, 2021, vol. 2, pp. 374–390. https://doi.org/10.3390/reactions2040024

    Article  Google Scholar 

  9. Kulikova, M.V., Catal. Today, 2020, vol. 348, pp. 89–94. https://doi.org/10.1016/j.cattod.2019.09.036

    Article  CAS  Google Scholar 

  10. Sulima, S.I., Bakun, V.G., Chistyakova, N.S., Larina, M.V., Yakovenko, R.E., and Savost’yanov, A.P., Petrol. Chem., 2021, vol. 61, no. 11, pp. 1178–1189. https://doi.org/10.1134/S0965544121110013

    Article  CAS  Google Scholar 

  11. Suo, Y., Yao, Y., Zhang, Y., Xing, S., and Yuan, Z., J. Indust. Eng. Chem., 2022, vol. 115, pp. 92–119. https://doi.org/10.1016/j.jiec.2022.08.026

    Article  CAS  Google Scholar 

  12. Iglesia, E., Appl. Catal. A: General, 1997, vol. 161, pp. 59–78. https://doi.org/10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  13. Gupta, S., Fernandes, R., Patel, R., Spreitzer, M., and Patel, N., Appl. Catal. A: General, 2023, vol. 661, article 119254. https://doi.org/10.1016/j.apcata.2023.119254

  14. Glasser, D., Hildebrandt, D., Liu, X., Lu, X., and Masuku, C.M., Cur. Opin. Chem. Eng., 2012, vol. 1, pp. 296–302. https://doi.org/10.1016/j.coche.2012.02.001

    Article  CAS  Google Scholar 

  15. Li, X., Chen, Y., Liu, S., Zhao, N., Jiang, X., Su, M., and Li, Z., Chem. Eng. J., 2021, vol. 416. 129180. https://doi.org/10.1016/j.cej.2021.129180

  16. Deviana, D., Rhim, G.B., Kim, Y., Lee, H.S., Lee, G.W., Youn, M.H., Kim, K.Y., Koo, K.Y., Park, J., and Chun, D.H., Chem. Eng. J., 2023, vol. 455, no. 2, article 140646. https://doi.org/10.1016/j.cej.2022.140646

  17. Liu, C., Chen, Y., Zhao, Y., Lyu, S., Wei, L., Li, X., and Zhang, Y., Li, J., Fuel, 2020, vol. 263. 116619. https://doi.org/10.1016/j.fuel.2019.116619

  18. Espinosa, G., Domínguez, J.M., Morales-Pacheco, P., Tobon, A., Aguilar, M., and Benítez, J., Catal. Today, 2011, vol. 166, pp. 47–52. https://doi.org/10.1016/j.cattod.2011.01.025

    Article  CAS  Google Scholar 

  19. Sineva, L.V., Gorokhova, E.O., Gryaznov, K.O., Ermolaev, I.S., and Mordkovich, V.Z., Catal. Today, 2021, vol. 378, pp. 140–148. https://doi.org/10.1016/j.cattod.2021.02.018

    Article  CAS  Google Scholar 

  20. Asalieva, E.Y., Kul’chakovskaya, E.V., Sineva, L.V., and Mordkovich, V.Z., Petrol. Chem., 2020, vol. 60, pp. 69–74. https://doi.org/10.1134/S0965544120010028

    Article  CAS  Google Scholar 

  21. Yakovenko, R.E., Agliullin, M.R., Zubkov, I.N., Papeta, O.P., Khliyan, G.T., and Savost’yanov, A.P., Petrol. Chem., 2021, vol. 61, no. 3, pp. 378–387. https://doi.org/10.1134/S0965544121030063

    Article  CAS  Google Scholar 

  22. Yakovenko, R.E., Bakun, V.G., Agliullin, M.R., Sulima, S.I., Zubkov, I.N., Pyatikonova, V.V., Bozhenko, E.A., and Savost’yanov, A.P., Petrol. Chem., 2022, vol. 62, no. 8, pp. 950–961. https://doi.org/10.1134/S0965544122070209

    Article  CAS  Google Scholar 

  23. Gorokhova, E.O., Kul’chakovskaya, E.V., Asalieva, E.Yu., Gryaznov, K.O., Mitberg, E.B., Sineva, L.V., and Mordkovich, V.Z., Petrol. Chem., 2021, vol. 61, no. 3, pp. 357–363. https://doi.org/10.1134/S0965544121030208

    Article  CAS  Google Scholar 

  24. Prieto, G., Martínez, A., Concepción, P., and MorenoTost, R., J. Catal., 2009, vol. 266, pp. 129–144. https://doi.org/10.1016/j.jcat.2009.06.001

    Article  CAS  Google Scholar 

  25. Martínez, A., Rollán, J., Arribas, M.A., Cerqueira, H.S., and Costa, A.F., J. Catal., 2007, vol. 249, pp. 162–173. https://doi.org/10.1016/j.jcat.2007.04.012

    Article  CAS  Google Scholar 

  26. Flores, C.B., Ordomsky, V.V., Zholobenko, V.L., Baaziz, W.M., Nilson, R., and Khodakov, A.Y., ChemCatChem., 2018, vol. 10, no. 10, pp. 2291–2299. https://doi.org/10.1002/cctc.201701848

    Article  CAS  Google Scholar 

  27. Rodionova, L.I., Knyazeva, E.E., Ivanova, I.I., and Konnov, S.V., Petrol. Chem., 2019, vol. 59, no. 4, pp. 455–470. https://doi.org/10.1134/S0965544119040133

    Article  CAS  Google Scholar 

  28. Sineva, L.V., Khatkova, E.Y., Kriventseva, E.V., and Mordkovich, V.Z., Mendeleev Commun., 2014, vol. 24, no. 5, pp. 316–318. https://doi.org/10.1016/j.mencom.2014.09.024

    Article  CAS  Google Scholar 

  29. Li, H., Hou, B., Wang, J., Qin, C., Zhong, M., Huang, X., Jia, L., and Li, D., Mol. Catal., 2018, vol. 459, pp. 106–112. https://doi.org/10.1016/j.mcat.2018.08.002

    Article  CAS  Google Scholar 

  30. Yakovenko, R.E., Bakun, V.G., Zubkov, I.N., Papeta, O.P., Saliev, A.N., Agliullin, M.R., and Savost’yanov, A.P., Kinet. Catal., 2022, vol. 63, pp. 399–411. https://doi.org/10.1134/S0023158422040139

    Article  CAS  Google Scholar 

  31. Subramanian, V., Cheng, K., Lancelot, C., Heyte, S., Paul, S., Moldovan, S., Ersen, O., Marinova, M., Ordomsky, V.V., and Khodakov, A.Y., ACS Catal., 2016, vol. 6, pp. 1785– 1792. https://doi.org/10.1021/acscatal.5b01596

    Article  CAS  Google Scholar 

  32. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, pp. 81–91. https://doi.org/10.1134/S0023158417010062

    Article  CAS  Google Scholar 

  33. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. https://www.icdd.com/

  34. Young, R.A., The Rietveld Method, Oxford University Press, 1995.

  35. Schanke, D., Vada, S., Blekkan, E.A., Hilmen, A.M., Hoff, A., and Holmen, A., J. Catal., 1995, vol. 156, no. 1, pp. 85–95. https://doi.org/10.1006/jcat.1995.1234

    Article  CAS  Google Scholar 

  36. Xu, D., Li, W., Duan, H., Ge, Q., and Xu, H., Catal. Lett., 2005, vol. 102, no. 3, pp. 229–235. https://doi.org/10.1007/s10562-005-5861-7

    Article  CAS  Google Scholar 

  37. Sulima, S.I., Bakun, V.G., Yakovenko, R.E., Shabel’skaya, N.P., Saliev, A.N., Narochnyi, G.B., and Savost’yanov, A.P., Kinet. Catal., 2018, vol. 59, no. 2, pp. 218–228. https://doi.org/10.1134/S0023158418020131

    Article  CAS  Google Scholar 

  38. Wolf, M., Fischer, N., and Claeys, M., Chem. Catal., 2021, vol. 1, no. 5, pp. 1014–1041. https://doi.org/10.1016/j.checat.2021.08.002

    Article  CAS  Google Scholar 

  39. Bezemer, G.L., Radstake, P.B., Koot, V., van Dillen, A.J., Geus, J.W., and de Jong, K.P., J. Catal., 2006, vol. 237, pp. 291–302. https://doi.org/10.1016/j.jcat.2005.11.015

    Article  CAS  Google Scholar 

  40. Akhmedov, V.M. and Al-Khowaiter, S.H., Catal. Rev., 2007, vol. 49, p. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  41. Khairullina, Z.R., Agliullin, M.R., Alekhina, I.E., and Kutepov, B.I., Vestn. Bashkir. Univ., 2020, vol. 25, pp. 495–505. https://doi.org/10.33184/bulletin-bsu-2020.3.6

    Article  Google Scholar 

  42. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Zubkov, I.N., and Nepomnyashchikh, E.V., Petrol. Chem., 2020, vol. 60, no. 5, pp. 577–584. https://doi.org/10.1134/S0965544120050102

    Article  Google Scholar 

  43. Yakovenko, R.E., Savost’yanov, A.P., Narochniy, G.B., Soromotin, V.N., Zubkov, I.N., Papeta, O.P., Svetogorov, R.D., and Mitchenko, S.A., Catal. Sci. Technol., 2020, vol. 10, no. 22, pp. 7613–7629. https://doi.org/10.1039/D0CY00975J

    Article  CAS  Google Scholar 

  44. Chalupka, K.A., Casale, S., Zurawicz, E., Rynkowski, J., and Dzwigaj, S., Micropor. Mesopor. Mater., 2015, vol. 211, pp. 9–18. https://doi.org/10.1016/j.micromeso.2015.02.024

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out with financial support from the Ministry of Sciences and Higher Education of the Russian Federation within State Assignment FENN-2020-0021 (project no. 2019-0990), using equipment of the Nanotechnology Center for Collective Use, South Russian State Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sulima.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papeta, O.P., Sulima, S.I., Bakun, V.G. et al. Fischer–Tropsch Synthesis over Bifunctional Catalysts Based on HBeta Zeolite. Pet. Chem. 63, 737–745 (2023). https://doi.org/10.1134/S0965544123060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060063

Keywords:

Navigation