Skip to main content
Log in

Influence of the Template/Al2O3 Ratio in Reaction Aluminophosphate Gels on the Characteristics of Intermediate Phases and AlPO4-11 Molecular Sieves

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Crystallization of aluminophosphate gels prepared using boehmite and phosphoric acid with different di-n-propylamine/Al2O3 ratios was studied. Depending on the di-n-propylamine/Al2O3 ratio, the following intermediate phases can be formed in reaction gels in the course of further crystallization: hydrated aluminophosphate AlPO4·2H2O, the layered phase, and their mixtures. Procedures were suggested for controlling the morphology of the AlPO4-11 molecular sieve, based on variation of the template/Al2O3 ratio in the course of the reaction gel preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Vermeiren, W. and Gilson, J.P., Top. Catal., 2009, vol. 52, pp. 1131–1161. https://doi.org/10.1007/s11244-009-9271-8

    Article  CAS  Google Scholar 

  2. Hartmann, M. and Elangovan, S., Adv. Nanopor. Mater., 2010, vol. 1, pp. 237–312. https://doi.org/10.1016/S1878-7959(09)00104-2

    Article  Google Scholar 

  3. Potter, M.E., ACS Catal., 2020, vol. 10, pp. 9758–9789. https://doi.org/10.1021/acscatal.0c02278

    Article  CAS  Google Scholar 

  4. Baerlocher, C., McCusker, L.B., and Olson, D.H., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007, 6th ed., p. 404.

  5. Raja, R., Sankar, G., and Thomas, J.M., J. Am. Chem. Soc., 2001, vol. 123, no. 33, pp. 8153–8154. https://doi.org/10.1021/ja011001+

    Article  CAS  PubMed  Google Scholar 

  6. Zong, Z., Elsaidi, S.K., Thallapally, P.K., and Carreon, M.A., Ind. Eng. Chem. Res., 2017, vol. 56, pp. 4113–4118. https://doi.org/10.1021/acs.iecr.7b00853

    Article  CAS  Google Scholar 

  7. Wang, N., Tang, Z.K., Li, G.D., and Chen, J.S., Nature, 2000, vol. 408, pp. 50–51. https://doi.org/10.1038/35040702

    Article  CAS  PubMed  Google Scholar 

  8. Hu, J., Wang, D., Guo, W., Du, S., and Tang, Z.K., J. Phys. Chem. С, 2012, vol. 116, pp. 4423–4430. https://doi.org/10.1021/jp210451q

    Article  CAS  Google Scholar 

  9. Yadav, R. and Sakthivel, A., Appl. Catal. A: General, 2014, vol. 481, pp. 143–160. https://doi.org/10.1016/j.apcata.2014.05.010

    Article  CAS  Google Scholar 

  10. Singh, P.S., Bandyopadhyay, R., Hegde, S.G., and Rao, B.S., Appl. Catal. A: General, 1996, vol. 136, no. 2, pp. 249–263. https://doi.org/10.1016/0926-860X(95)00303-7

    Article  CAS  Google Scholar 

  11. Nieminen, V., Kumar, N., Heikkilä, T., Laine, E., Villegas, J., Salmi, T., and Murzin, D.Y., Appl. Catal. A: General, 2004, vol. 259, no. 2, pp. 227–234. https://doi.org/10.1016/j.apcata.2003.09.038

    Article  CAS  Google Scholar 

  12. Zhu, Z., Chen, Q., Xie, Z., Yang, W., and Li, C., Micropor. Mesopor. Mater., 2006, vol. 88, nos. 1–3, pp. 16–21. https://doi.org/10.1016/j.micromeso.2005.08.021

    Article  CAS  Google Scholar 

  13. Wang, X., Guo, F., Wei, X., Liu, Z., Zhang, W., Guo, S., and Zhao, L., Korean J. Chem. Eng., 2016, vol. 33, pp. 2034–2041. https://doi.org/10.1007/s11814-016-0065-y

    Article  CAS  Google Scholar 

  14. Agliullin, M.R., Fayzullin, A.V., Fayzullina, Z.R., and Kutepov, B.I., Crystals, 2023, vol. 13, p. 227. https://doi.org/10.3390/cryst13020227

    Article  CAS  Google Scholar 

  15. Huang, Y., Demko, B.A., and Kirby, C.W., Chem. Mater., 2003, vol. 15, no. 12, pp. 2437–2444. https://doi.org/10.1021/cm021728c

    Article  CAS  Google Scholar 

  16. Albuquerque, A., Coluccia, S., Marchese, L., and Pastore, H.O., Stud. Surf. Sci. Catal., 2004, vol. 154, pp. 966–970. https://doi.org/10.1016/S0167-2991(04)80911-X

    Article  Google Scholar 

  17. Vistad, Ø.B., Akporiaye, D.E., and Lillerud, K.P., J. Phys. Chem. B, 2001, vol. 105, no. 50, pp. 12437–12447. https://doi.org/10.1021/jp0110758

    Article  CAS  Google Scholar 

  18. Venkatathri, N., Hegde, S.G., Ramaswamy, V., and Sivasanker, S., Micropor. Mesopor. Mater., 1998, vol. 23, nos. 5–6, pp. 277–285. https://doi.org/10.1016/S1387-1811(98)00123-1

    Article  CAS  Google Scholar 

  19. Agliullin, M.R., Serebrennikov, D.V., Khalilov, L., Fayzullina, Z.R., Pavlova, I.N., and Kutepov, B.I., Kinet. Catal., 2023, vol. 64, no. 3, pp. 311–319. https://doi.org/10.1134/S0023158423030011

    Article  CAS  Google Scholar 

  20. Agliullin, M.R., Cherepanova, S.V., Kuvatova, R.Z., Faizullin, A.V., Khalilov, L.M., and Kutepov, B.I., Petrol. Chem., 2023, vol. 63, no. 2, pp. 149–157. https://doi.org/10.1134/S0965544123020044

    Article  CAS  Google Scholar 

  21. Zhang, B., Xu, J., Fan, F., Guo, Q., Tong, X., Yan, W., Yu, J., Deng, F., Li, C., and Xu, R., Micropor. Mesopor. Mater., 2012, vol. 147, no. 1, pp. 212–221. https://doi.org/10.1016/j.micromeso.2011.06.018

    Article  CAS  Google Scholar 

  22. Chen, B. and Huang, Y., J. Phys. Chem. C, 2007, vol. 111, no. 42, pp. 15236–15243. https://doi.org/10.1021/jp071868f

    Article  CAS  Google Scholar 

  23. Xu, R., Zhang, W., Xu, J., Tian, Z., Deng, F., Han, X., and Bao, X., J. Phys. Chem. C, 2013, vol. 117, no. 11, pp. 5848–5854. https://doi.org/10.1021/jp400422z

    Article  CAS  Google Scholar 

  24. Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, no. 8, pp. 836–851. https://doi.org/10.1134/S0965544121080028

    Article  CAS  Google Scholar 

  25. Fan, F., Feng, Z., Sun, K., Guo, M., Guo, Q., Song, Y., Li, W., and Li, C., Angew. Chem., 2009, vol. 121, no. 46, pp. 8899–8903. https://doi.org/10.1002/ange.200903601

    Article  Google Scholar 

  26. Holmes, A.J., Kirkby, S.J., Ozin, G.A., and Young, D., J. Phys. Chem., 1994, vol. 98, no. 17, pp. 4677–4682. https://doi.org/10.1021/j100068a032

    Article  CAS  Google Scholar 

  27. Database of Zeolite Structures. http://www.iza-structure.org/databases/

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 23-73-00119, https://rscf.ru/project/23-73-00119/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Agliullin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agliullin, M.R., Kuvatova, R.Z., Gus’kov, V.Y. et al. Influence of the Template/Al2O3 Ratio in Reaction Aluminophosphate Gels on the Characteristics of Intermediate Phases and AlPO4-11 Molecular Sieves. Pet. Chem. 63, 708–717 (2023). https://doi.org/10.1134/S0965544123060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060026

Keywords:

Navigation