Skip to main content
Log in

Bimetallic Catalysts for Isomerization of Alkanes (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Incorporating a second metal into the monometallic bifunctional catalyst structure results in appearance of new catalytic characteristics and increase in the catalytic productivity. This type of catalyst is called bimetallic catalyst, which is better than a monometallic one in industrial processes, because it enhances some catalytic features like metal dispersion, activity, selectivity, stability, and lifespan. Different researches have asserted that the bimetallic catalyst increases the yield of the desired branched alkanes and decreases the undesired low-molecular-weight gaseous products. The enhancement of catalytic properties of the bimetallic catalyst is ascribed mainly to the electronic features and geometric structure of nanoparticles of two metals and increases the Lewis acidity and balance between metals and a supporter. In this paper, the theoretical and experimental fundamentals of bimetallic catalysis are reviewed based on many trusted experimental works of different researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Webb, R., Increasing Gasoline Octane Levels to Reduce Vehicle Emissions: A Review of Federal and State Authority, Sabin Center for Climate Change Law, Columbia Law School, 2017.

  2. Okuhara, T., J. Jpn. Petrol. Inst., 2004, vol. 47, no. 1, pp. 1–10. https://doi.org/10.1627/jpi.47.1

    Article  CAS  Google Scholar 

  3. Treese, S.A., Jones, D.S., and Pujadó, P.R., Eds., Handbook of Petroleum Processing, Second Edition, Switzerland: Springer, 2015. https://doi.org/10.1007/978-3-319-05545-9

  4. Ghosh, P., Hickey, K.J., and Jaffe, S.B., Ind. Eng. Chem. Res., 2006, vol. 45, no. 1, pp. 337–345. https://doi.org/10.1021/ie050811h

    Article  CAS  Google Scholar 

  5. Ono, Y., Catal. Today, 2003, vol. 81, no. 1, pp. 3–16. https://doi.org/10.1016/S0920-5861(03)00097-X

    Article  CAS  Google Scholar 

  6. Degnan, T.F., Topics Catal., 2000, vol. 13, no. 4, pp. 349–356. https://doi.org/10.1023/A:1009054905137

    Article  CAS  Google Scholar 

  7. Tanabe, K. and Hölderich, W.F., Appl. Catal. A: Gen., 1999, vol. 181, no. 2, pp. 399–434. https://doi.org/10.1016/S0926-860X(98)00397-4

    Article  CAS  Google Scholar 

  8. Weitkamp, J., Solid State Ionics, 2000, vol. 131, nos. 1–2, pp. 175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  CAS  Google Scholar 

  9. AlKhafaji, K.S., Al-Zaidi, B.Y., Shakor, Z.M., and Hussein, S.J., J. Petrol. Res. Studies, 2022, vol. 12, no. 2, pp. 64‒80. https://doi.org/10.52716/jprs.v12i2.658

    Article  Google Scholar 

  10. Sinfelt, J.H., Acc. Chem. Res., 1987, vol. 20, no. 4, pp. 134–139. https://doi.org/10.1021/ar00136a002

    Article  CAS  Google Scholar 

  11. Coker, A.K., Petroleum Refining Design and Applications Handbook, vol. 1, John Wiley & Sons, 2018. https://doi.org/10.1002/9781119257110

  12. Hancsók, J., Holló, A., Debreczeni, É., Perger, J., and Kalló, D., Stud. Surf. Sci. Catal., 1999, vol. 125, pp. 417–424. https://doi.org/10.1016/s0167-2991(99)80241-9

    Article  Google Scholar 

  13. Khalaf, Y.H., Sherhan, B.Y., and Zaidoon, M., Eng. Technol. J., 2022, vol. 40, no. 9, pp. 1158–1170. https://doi.org/10.30684/etj.2022.132491.1124

    Article  Google Scholar 

  14. Bergvall, C. and Westerholm, R., Atmos. Environ., 2009, vol. 43, no. 25, pp. 3883–3890. https://doi.org/10.1016/j.atmosenv.2009.04.055

    Article  CAS  Google Scholar 

  15. Tanner, R.L., Miguel, A.H., De Andrade, J.B., Gaffney, J.S., and Streit, G.E., Environ. Sci. Technol., 1988, vol. 22, no. 9, pp. 1026–1034. https://doi.org/10.1021/es00174a005

    Article  CAS  PubMed  Google Scholar 

  16. Niwa, M., Katada, N., and Okumura, K., Characterization and Design of Zeolite Catalysts, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-12620-8

  17. de Jong, K.P., Ed. Synthesis of Solid Catalysts, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. https://doi.org/10.1002/9783527626854

  18. Mowery, D.L., and McCormick, R.L., Appl. Catal. B: Environ., 2001, vol. 34, no. 4, pp. 287–297. https://doi.org/10.1016/S0926-3373(01)00222-3

    Article  CAS  Google Scholar 

  19. Lamberov, A.A., Mukhambetov, I.N., and Zalyaliev, R.F., Catal. Ind., 2014, vol. 6, no. 2, pp. 128–133. https://doi.org/10.1134/S2070050414020068

    Article  Google Scholar 

  20. Sachtler, W.M. and Zhang, Z., Adv. Catal., 1993, vol. 39, pp. 129–220. https://doi.org/10.1016/S0360-0564(08)60578-7

    Article  CAS  Google Scholar 

  21. Kikuchi, E., Tsurumi, M., Kimura, T., and Morita, Y., Bull. Jpn. Petrol. Inst., 1973, vol. 15, no. 2, pp. 122–128. https://doi.org/10.1627/jpi1959.15.122

    Article  CAS  Google Scholar 

  22. Structure and Reactivity of Metals in Zeolite Materials, Pariente, M.S.-S. and Sánchez-Sánchez, M., Eds., Switzerland: Springer, 2018. https://doi.org/10.1007/978-3-319-98905-1

  23. Saberi, M.A., Le Van Mao, R., Martin, M., and Mak, A.W.H., Appl. Catal. A: Gen., 2001, vol. 214, no. 2, pp. 229–236. https://doi.org/10.1016/S0926-860X(01)00493-8

    Article  CAS  Google Scholar 

  24. Scherzer, J. and Gruia, A.J., Hydrocracking Science and Technology, CRC Press, 1996. https://doi.org/10.1201/9781482233889

  25. Weisz, P.B., Adv. Catal., 1962, vol. 13, pp. 137–190. https://doi.org/10.1016/S0360-0564(08)60287-4

    Article  CAS  Google Scholar 

  26. Mills, G.A., Heinemann, H., Milliken, T.H., and Oblad, A.G., Ind. Eng. Chem., 1953, vol. 45, no. 1, pp. 134–137. https://doi.org/10.1021/ie50517a043

    Article  CAS  Google Scholar 

  27. Sinfelt, J.H., Hurwitz, H., and Rohrer, J.C., J. Catal., 1962, vol. 1, no. 5, pp. 481–483. https://doi.org/10.1016/0021-9517(62)90097-0

    Article  CAS  Google Scholar 

  28. Jiménez, C., Romero, F.J., Roldán, R., Marinas, J.M., and Gómez, J.P., Appl. Catal. A: Gen., 2003, vol. 249, no. 1, pp. 175–185. https://doi.org/10.1016/S0926-860X(03)00177-7

    Article  CAS  Google Scholar 

  29. Kulprathipanja, S., Zeolites in Industrial Separation and Catalysis, Weinheim: WILEY-VCH Verlag, GmbH & Co. KGaA, 2010. ISBN: 978-527-32505-4

  30. Demirci, Ü.B. and Garin, F., Catal. Lett., 2001, vol. 76, no. 1, pp. 45–51. https://doi.org/10.1023/A:1016707621813

    Article  CAS  Google Scholar 

  31. Zhou, J., Zhao, J., Zhang, J., Zhang, T., Ye, M., and Liu, Z., Chinese J. Catal., 2020, vol. 41, no. 7, pp. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5

    Article  CAS  Google Scholar 

  32. Zhao, J., Huffman, G.P., and Davis, B.H., Catal. Lett., 1994, vol. 24, no. 3, pp. 385–389. https://doi.org/10.1007/BF00811811

    Article  CAS  Google Scholar 

  33. Gates, B.C., Flytzani-Stephanopoulos, M., Dixon, D.A., and Katz, A., Catal. Sci. Technol., 2017, vol. 7, no. 19, pp. 4259–4275. https://doi.org/10.1039/C7CY00881C

    Article  CAS  Google Scholar 

  34. Moliner, M. and Corma, A., Microporous Mesoporous Mater., 2014, vol. 189, pp. 31–40. https://doi.org/10.1016/j.micromeso.2013.08.003

    Article  CAS  Google Scholar 

  35. Liu, J., ACS Catal., 2017, vol. 7, no. 1, pp. 34–59. https://doi.org/10.1021/acscatal.6b01534

    Article  CAS  Google Scholar 

  36. Yang, M., Liu, J., Lee, S., Zugic, B., Huang, J., Allard, L.F., and Flytzani-Stephanopoulos, M., J. Am. Chem. Soc., 2015, vol. 137, no. 10, pp. 3470–3473. https://doi.org/10.1021/ja513292k

    Article  CAS  PubMed  Google Scholar 

  37. Guczi, L. and Kiricsi, I., Appl. Catal. A: Gen., 1999, vol. 186, nos. 1–2, pp. 375–394. https://doi.org/10.1016/S0926-860X(99)00156-8

    Article  CAS  Google Scholar 

  38. Li, X. and Iglesia, E., Chem. Commun., 2008, no. 5, pp. 594–596. https://doi.org/10.1039/B715543C

    Article  Google Scholar 

  39. Guzman, J. and Gates, B.C., Dalton Trans., 2003, no. 17, pp. 3303–3318. https://doi.org/10.1039/B303285J

    Article  Google Scholar 

  40. Corma, A., Nemeth, L.T., Renz, M., and Valencia, S., Nature, 2001, vol. 412, no. 6845, pp. 423–425. https://doi.org/10.1038/35086546

  41. Corma, A., Llabres i Xamena, F.X., Prestipino, C., Renz, M., and Valencia, S., J. Phys. Chem. C, 2009, vol. 113, no. 26, pp. 11306–11315. https://doi.org/10.1021/jp902375n

    Article  CAS  Google Scholar 

  42. Zhu, Y., Chuah, G., and Jaenicke, S., J. Catal., 2004, vol. 227, no. 1, pp. 1–10. https://doi.org/10.1016/j.jcat.2004.05.037

    Article  CAS  Google Scholar 

  43. Lewis, J.D., Van de Vyver, S., and Román-Leshkov, Y., Angew. Chem., 2015, vol. 127, no. 34, pp. 9973–9976. https://doi.org/10.1002/ange.201502939

    Article  Google Scholar 

  44. Corma, A., Iborra, S., and Velty, A., Chem. Rev., 2007, vol. 107, no. 6, pp. 2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  PubMed  Google Scholar 

  45. Román-Leshkov, Y. and Davis, M.E., ACS Catal., 2011, vol. 1, no. 11, pp. 1566–1580. https://doi.org/10.1021/cs200411d

    Article  CAS  Google Scholar 

  46. Moliner, M., Dalton Trans., 2014, vol. 43, no. 11, pp. 4197–4208. https://doi.org/10.1039/C3DT52293H

    Article  CAS  PubMed  Google Scholar 

  47. Luo, H.Y., Lewis, J.D., and Román-Leshkov, Y., Annu. Rev. Chem. Biomol. Eng., 2016, vol. 7, pp. 663–692. https://doi.org/10.1146/annurev-chembioeng-080615-034551

    Article  CAS  PubMed  Google Scholar 

  48. Yan, G.X., Wang, A., Wachs, I.E., and Baltrusaitis, J., Appl. Catal. A: Gen., 2019, vol. 572, pp. 210–225. https://doi.org/10.1016/j.apcata.2018.12.012

    Article  CAS  Google Scholar 

  49. Li, H., Wang, J., Zhou, D., Tian, D., Shi, C., Mueller, U., Feyen, M., Gies, H., Xiao, F.-S., de Vos, D.E., Yokoi, T., Bao, X., and Zhang, W., Microporous Mesoporous Mater., 2015, vol. 218, pp. 160–166. https://doi.org/10.1016/j.micromeso.2015.07.020

    Article  CAS  Google Scholar 

  50. Blomsma, E., Martens, J.A., and Jacobs, P.A., J. Catal., 1997, vol. 165, no. 2, pp. 241–248. https://doi.org/10.1006/jcat.1997.1473

    Article  CAS  Google Scholar 

  51. Yang, G., Zhou, L., and Han, X., J. Mol. Catal. A: Chem., 2012, vol. 363, pp. 371–379. https://doi.org/10.1016/j.molcata.2012.07.013

    Article  CAS  Google Scholar 

  52. Foger, K. and Anderson, J.R., J. Catal., 1980, vol. 145, no. 1, pp. 140–145.

    Article  Google Scholar 

  53. Schwank, J., Gold Bull., 1985, vol. 18, no. 1, pp. 2–10. https://doi.org/10.1007/BF03214680

    Article  CAS  Google Scholar 

  54. O’Cinneide, A. and Gault, F.G., J. Catal., 1975, vol. 37, no. 2, pp. 311–323. https://doi.org/10.1016/0021-9517(75)90165-7

    Article  Google Scholar 

  55. Ciapetta, F.G. and Wallace, D.N., Catal. Rev., 1972, vol. 5, no. 1, pp. 67–158. https://doi.org/10.1080/01614947208076866

    Article  Google Scholar 

  56. Sinfelt, J.H., J. Catal., 1973, vol. 29, no. 2, pp. 308–315. https://doi.org/10.1016/0021-9517(73)90234-0

    Article  CAS  Google Scholar 

  57. Schwank, J., Gold Bulletin, 1983, vol. 16, no. 4, pp. 103–110.

    Article  CAS  Google Scholar 

  58. Jarvis, J., He, P., Wang, A., and Song, H., Fuel, 2019, vol. 236, pp. 1301–1310. https://doi.org/10.1016/j.fuel.2018.09.109

    Article  CAS  Google Scholar 

  59. Ahn, D.H., Lee, J.S., Nomura, M., Sachtler, W.M.H., Moretti, G., Woo, S.I., and Ryoo, R., J. Catal., 1992, vol. 133, no. 1, pp. 191–201. https://doi.org/10.1016/0021-9517(92)90197-P

    Article  CAS  Google Scholar 

  60. Eswaramoorthi, I. and Lingappan, N., Appl. Catal. A: Gen., 2003, vol. 245, no. 1, pp. 119–135. https://doi.org/10.1016/S0926-860X(02)00637-3

    Article  CAS  Google Scholar 

  61. Pope, T.D., Kriz, J.F., Stanciulescu, M., and Monnier, J., Appl. Catal. A: Gen., 2002, vol. 233, nos. 1–2, pp. 45–62. https://doi.org/10.1016/S0926-860X(02)00114-X

    Article  CAS  Google Scholar 

  62. Fúnez, A., De Lucas, A., Sánchez, P., Ramos, M.J., and Valverde, J.L., Chem. Eng. J., 2008, vol. 136, nos. 2–3, pp. 267–275. https://doi.org/10.1016/j.cej.2007.03.062

    Article  CAS  Google Scholar 

  63. Shi, G., Fang, D., and Shen, J., Microporous Mesoporous Mater., 2009, vol. 120, no. 3, pp. 339–345. https://doi.org/10.1016/j.micromeso.2008.11.022

    Article  CAS  Google Scholar 

  64. Liu, P., Yao, Y., Zhang, X., and Wang, J., Chin. J. Chem. Eng., 2011, vol. 19, no. 2, pp. 278–284. https://doi.org/10.1016/S1004-9541(11)60166-3

    Article  CAS  Google Scholar 

  65. Yue, C., Zhu, X., Rigutto, M., and Hensen, E., Appl. Catal. B: Environ., 2015, vol. 163, pp. 370–381. https://doi.org/10.1016/j.apcatb.2014.08.008

    Article  CAS  Google Scholar 

  66. Wang, H., Ruan, H., Feng, M., Qin, Y., Job, H., Luo, L., Wang, C., Engelhard, M.H., and Yang, B., ChemSusChem, 2017, vol. 10, no. 8, pp. 1846–1856. https://doi.org/10.1002/cssc.201700160

    Article  CAS  PubMed  Google Scholar 

  67. Wang, J., Zhang, W., Suo, Y., and Wang, Y., J. Porous Mater., 2018, vol. 25, no. 5, pp. 1317–1324. https://doi.org/10.1007/s10934-017-0542-7

    Article  CAS  Google Scholar 

  68. Karakoulia, S.A., Heracleous, E., and Lappas, A.A., Catal. Today, 2020, vol. 355, pp. 746–756. https://doi.org/10.1016/j.cattod.2019.04.072

    Article  CAS  Google Scholar 

  69. Jarvis, J.S., Harrhy, J.H., He, P., Wang, A., Liu, L., and Song, H., Chem. Commun., 2019, vol. 55, no. 23, pp. 3355–3358. https://doi.org/10.1039/c9cc00338j

    Article  CAS  Google Scholar 

  70. Lin, C., Pan, H., Yang, Z., Han, X., Tian, P., Li, P., Xiao, Z., Xu, J., and Han, Y.F., Ind. Eng. Chem. Res., 2020, vol. 59, no. 14, pp. 6424–6434. https://doi.org/10.1021/acs.iecr.9b05953

    Article  CAS  Google Scholar 

  71. Oseke, G.G., Atta, A.Y., Mukhtar, B., El-Yakubu, B.J., and Aderemi, B.O., J. King Saud Univ. Eng. Sci., 2021, vol. 33, no. 8, pp. 531–538. https://doi.org/10.1016/j.jksues.2020.07.014

    Article  Google Scholar 

  72. Yang, L., Song, Z., Yu, Y., Zhu, L., and Xia, D., Catal. Surv. Asia, 2020, vol. 24, no. 2, pp. 104–114. https://doi.org/10.1007/s10563-020-09295-4

    Article  CAS  Google Scholar 

  73. Wang, S., Cao, M., Sun, S., Jiang, H., Duan, Y., Kong, X., and Wang, H., Fuel, 2020, vol. 280, p. 118274. https://doi.org/10.1016/j.fuel.2020.118274

    Article  CAS  Google Scholar 

  74. Wang, D., Kang, X., Gu, Y., Zhang, H., Liu, J., Wu, A., Yan, H., Nian, C., and Fu, H., ACS Catal., 2020, vol. 10, no. 18, pp. 10449–10458. https://doi.org/10.1021/acscatal.0c01159

    Article  CAS  Google Scholar 

  75. Xiao, Y., Shang, J., Zhai, M., and Qiao, C., Int. J. Energy Res., 2021, vol. 45, no. 6, pp. 9648–9656. https://doi.org/10.1002/er.6391

    Article  CAS  Google Scholar 

  76. Hamied, R.S., Raouf, S.R., and Sukkar, K.A., Eng. Technol. J., 2013, vol. 31, no. 18, pp. 14‒35.

    Article  Google Scholar 

  77. Sukkar, K.A., Raouf, S.R., and Hamied, R.S., Eng. Technol. J., 2013, vol. 31, no. 12, pp. 2357‒2380. https://doi.org/10.30684/etj.31.12A.12

    Article  Google Scholar 

  78. Al-Karim, A.A., Shakor, Z.M., Al-Sheikh, F., and Anderson, W.A., Reac. Kinet., Mech. Cat., 2022, vol. 135, no. 2, pp. 847‒865. https://doi.org/10.1007/s11144-022-02179-w

    Article  CAS  Google Scholar 

  79. Hamied, R.S. and Raouf, S.R., Iraqi J. Oil Res., 2022, vol. 2, no. 1, pp. 108–121. https://doi.org/10.55699/ijogr.2022.0201.1020

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank the Department of Chemical Engineering, University of Technology, Baghdad, Iraq for the support in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq Al-Sheikh.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, Y.H., Sherhan, B.Y., Shakor, Z.M. et al. Bimetallic Catalysts for Isomerization of Alkanes (A Review). Pet. Chem. 63, 829–843 (2023). https://doi.org/10.1134/S0965544123050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123050079

Keywords:

Navigation