Skip to main content
Log in

Preparation of Magnetic Zeolites for Medicinal Purposes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Magnetic Beta zeolite was synthesized under hydrothermal conditions by doping aluminosilicate gel with magnetite nanoparticles. The strength of Fe3O4 nanoparticle fixation in the composite synthesized under hydrothermal conditions was evaluated in comparison with the samples prepared by coprecipitation. The efficiency of the adsorption and desorption of 5-fluorouracil antitumor drug on samples of Beta zeolite and Beta–Fe3O4 magnetic nanocomposite was studied. The kinetics of the 5-fluorouracil release from the composite was described using the Higuchi model. The physicochemical properties of the samples were characterized. The hemolytic activity of the initial Beta zeolite and magnetic composite based on it toward human blood cells and the ability for biodegradation in a synthetic biological medium were studied with the aim of ensuring safe use of the materials as drug carriers. The results of the study allow conclusions on the possibility of using the magnetic nanocomposites in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kritika and Roy, I., Mater. Adv., 2022, vol. 3, pp. 7425–7444. https://doi.org/10.1039/D2MA00444E

    Article  Google Scholar 

  2. Ma, Z., Mohapatra, J., Wei, K., Liu, J.P., and Sun, S., Chem. Rev., 2023, vol. 123, no. 7, pp. 3904–3943. https://doi.org/10.1021/acs.chemrev.1c00860

    Article  CAS  PubMed  Google Scholar 

  3. Brigante, M., Pecini, E., and Avena, M., Micropor. Mesopor. Mater., 2016, vol. 230, pp. 1–10. https://doi.org/10.1016/j.micromeso.2016.04.032

    Article  CAS  Google Scholar 

  4. Lu, A.-H., Salabas, E.L., and Schuth, F., Angew. Chem. Int. Ed., 2007, vol. 46, pp. 1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  5. Lee, N., Yoo, D., Ling, D., Cho, M.H., Hyeon, T., and Cheon, J., Chem. Rev., 2015, vol. 115, pp. 10637– 10689. https://doi.org/10.1021/acs.chemrev.5b00112

    Article  CAS  PubMed  Google Scholar 

  6. Lee, N. and Hyeon, T., Chem. Soc. Rev., 2012, vol. 41, pp. 2575–2589. https://doi.org/10.1039/c1cs15248c

    Article  CAS  PubMed  Google Scholar 

  7. Kim, B.H., Lee, N., Kim, H., An, K., Park, Y.I., Choi, Y., Shin, K., Lee, Y., Kwon, S.G., Na, H.B., Park, J.-G., Ahn, T.-Y., Kim, Y.-W., Moon, W.K., Choi, S.H., and Hyeon, T., J. Am. Chem. Soc., 2011, vol. 133, pp. 12624–12631. https://doi.org/10.1021/ja203340u

    Article  CAS  PubMed  Google Scholar 

  8. Estelrich, J., Escribano, E., Queralt, J., and Busquets, M.A., Int. J. Mol. Sci., 2015, vol. 16, pp. 8070–8101. https://doi.org/10.3390/ijms16048070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding, Y., Shen, S.Z., Sun, H., Sun, K., Liu, F., Qi, Y., and Yan, J., Mater. Sci. Eng. C: Mater. Biol. Appl., 2015, vol. 48, pp. 487–498. https://doi.org/10.1016/j.msec.2014.12.036

    Article  CAS  PubMed  Google Scholar 

  10. Wahajuddin, S.A., Int. J. Nanomed., 2012, vol. 7, pp. 3445–3471. https://doi.org/10.2147/IJN.S30320

    Article  CAS  Google Scholar 

  11. Ficai, D., Ficai, A., and Andronescu, E., in Water Purification, Academic, 2017, pp. 1–32. https://doi.org/10.1016/B978-0-12-804300-4.00001-0

  12. Maharana, M. and Sen, S., Mater. Today: Proc., 2021, vol. 47, no. 7, pp. 1490–1495. https://doi.org/10.1016/j.matpr.2021.04.370

    Article  CAS  Google Scholar 

  13. Liu, L., Hitchens, T.K., Ye, Q., Wu, Y., Barbe, B., Prior, D.E., Li, W.F., Yeh, F.-C., Foley, L.M., Bain, D.J., and Ho, C., Biochim. Biophys. Acta: General Subjects, 2013, vol. 1830, no. 6, pp. 3447–3453. https://doi.org/10.1016/j.bbagen.2013.01.021

    Article  CAS  Google Scholar 

  14. Liu, H., Peng, S., Shu, L., Chen, T., Bao, T., and Frost, R.L., Chemosphere, 2013, vol. 91, no. 11, p. 1539. https://doi.org/10.1016/j.chemosphere.2012.12.038

    Article  CAS  PubMed  Google Scholar 

  15. Cao, J., Liu, X.-W., Fu, R., and Tan, Z., Sep. Purif. Technol., 2008, vol. 63, no. 1, p. 92. https://doi.org/10.1016/j.seppur.2008.04.015

    Article  CAS  Google Scholar 

  16. Yuan, M.L., Song, C., and Yan, G.J., Adv. Mater. Res., 2011, vols. 311–313, pp. 2040–2047. https://doi.org/10.4028/www.scientific.net/AMR.311-313.2040

    Article  CAS  Google Scholar 

  17. Rezaee, H., Ghorbani, M., Nikpay, A., and Soltani, M., J. Dispersion Sci. Technol., 2019, vol. 40, no. 4, pp. 587–593. https://doi.org/10.1080/01932691.2018.1475240

    Article  CAS  Google Scholar 

  18. Wen, X., Yang, F., Ke, Q.-F., Xie, X.-T., and Guo, Y.-P., J. Mater. Chem. B, 2017, vol. 5, no. 38, pp. 7866–7875. https://doi.org/10.1039/C7TB01830D

    Article  CAS  PubMed  Google Scholar 

  19. Amani, S., Garmarudi, A.B., Rahmani, N., and Khanmohammadi, M., RSC Adv., 2019, vol. 9, no. 55, pp. 32348–32356. https://doi.org/10.1039/d0ra90085k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kontogiannidou, E., Karavasili, C., Kouskoura, M.G., Filippousi, M., Tendeloo, G.V., Andreadis, L.L., Eleftheriadis, G.K., Kontopoulou, L., Markopoulou, C.K., Bouropoulos, N., and Fatouros, D.G., J. Drug Delivery Sci. Technol., 2019, vol. 51, pp. 177–184. https://doi.org/10.1016/j.jddst.2019.02.036

    Article  CAS  Google Scholar 

  21. Abasian, M., Radmansouri, M., Juybari, M.H., Ghasemi, M.V., Mohammad, A., Irani, M., and Jazi, F.S., Int. J. Biol. Macromol., 2019, vol. 121, pp. 398–406. https://doi.org/10.1016/j.ijbiomac.2018.09.215

    Article  CAS  PubMed  Google Scholar 

  22. Popova, M., Mihaylova, R., Momekov, G., Momekova, D., Lazarova, H., Trendafilova, I., Mitova, V., Koseva, N., Mihalai, J., Petkov, P.St, Alessandrov, H.A., Vayssilov, G.N., Konstantinov, S., and Szegedi, A., Eur. J. Pharm. Biopharm., 2019, vol. 142, pp. 460–472. https://doi.org/10.1016/j.ejpb.2019.07.021

    Article  CAS  PubMed  Google Scholar 

  23. Sağir, T., Huysal, M., Durmus, Z., Kurt, B.Z., Senel, M., and Isık, S., Biomed. Pharmacother., 2016, vol. 77, pp. 182–190. https://doi.org/10.1016/j.biopha.2015.12.025

    Article  CAS  PubMed  Google Scholar 

  24. Vilaça, N., Amorim, R., Machado, A.F., Parpot, P., Pereira, M.F.R., Sardo, M., and Baltazar, F., Colloids Surf. B: Biointerfaces, 2013, vol. 112, pp. 237–244. https://doi.org/10.1016/j.colsurfb.2013.07.042

    Article  CAS  PubMed  Google Scholar 

  25. Al-Thawabeia, R.A. and Hodali, H.A., J. Chem., 2015, vol. 2015, article 403597. https://doi.org/10.1155/2015/403597

  26. Spanakis, M., Bouropoulos, N., Theodoropoulos, D., Sygellou, L., Ewart, S., Moschovi, A.M., and Fatouros, D.G., Nanomed.: Nanotechnol., Biol. Med., 2014, vol. 10, no. 1, pp. 197–205. https://doi.org/10.1016/j.nano.2013.06.016

    Article  CAS  Google Scholar 

  27. Datt, A., Burns, E.A., Dhuna, N.A., and Larsen, S.C., Micropor. Mesopor. Mater., 2013, vol. 167, pp. 182–187. https://doi.org/10.1016/j.micromeso.2012.09.011

    Article  CAS  Google Scholar 

  28. Vilaça, N., Bertão, A.R., Prasetyanto, E.A., Granja, S., Costa, M., Fernandes, R., Figueiredo, F., Fonseca, A.M., De Cola, L., Baltazar, F., and Neves, I.C., Mater. Sci. Eng. C, 2021, vol. 120, article 111721. https://doi.org/10.1016/j.msec.2020.111721

  29. Nah, I.W., Hwang, K.Y., and Shul, Y.G., Powder Technol., 2007, vol. 177, no. 2, pp. 99–101. https://doi.org/10.1016/j.powtec.2007.02.044

    Article  CAS  Google Scholar 

  30. Yamaura, M. and Fungaro, D.A., J. Mater. Sci., 2013, vol. 48, no. 14, pp. 5093–5101. https://doi.org/10.1007/s10853-013-7297-6

  31. Cao, J., Liu, X.-W., Fu, R., and Tan, Z., Sep. Purif. Technol., 2008, vol. 63, no. 1, pp. 92–100. https://doi.org/10.1016/j.seppur.2008.04.015

    Article  CAS  Google Scholar 

  32. Loiola, A.R., Bessa, R.A., Oliveira, C.P., Freitas, A.D.L., Soares, S.A., Bohn, F., and Pergher, S.B.C., J. Magn. Magn. Mater., 2022, vol. 560, article 169651. https://doi.org/10.1016/j.jmmm.2022.169651

  33. Golubeva, O.Y., Brazovskaya, E.Y., Ul’yanova, N.Y., and Morozova, Y.A., Glass Phys. Chem., 2018, vol. 44, no. 2, pp. 108–114. https://doi.org/10.1134/S1087659618020049

    Article  CAS  Google Scholar 

  34. Golubeva, O.Y., Brazovskaya, E.Y., Alikina, Y.A., D’yachenko, S.V., and Zhernovoi, A.I., Glass Phys. Chem., 2019, vol. 45, no. 1, pp. 66–73. https://doi.org/10.1134/S1087659619010036

    Article  CAS  Google Scholar 

  35. Kuwakara, Y., Miyazaki, T., Shirosaki, Y., and Kawashita, M., RSC Adv., 2014, vol. 4, pp. 23359–23363. https://doi.org/10.1039/C4RA02073A

    Article  Google Scholar 

  36. Tas, A.С., Biomaterials, 2000, vol. 21, p. 1429. https://doi.org/10.1016/s0142-9612(00)00019-3

    Article  CAS  PubMed  Google Scholar 

  37. Antibacterial Peptide Protocols, Shafer, W.M., Ed., Humana, 1997, vol. 78, p. 255.

  38. Mariscal, A., Lopez-Gigosos, R.M., Carnero-Varo, M., and Fernandez-Crehuet, J., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 4, pp. 773–783. https://doi.org/10.1007/s00253-009-1879-x

    Article  CAS  PubMed  Google Scholar 

  39. Ulyanova, N.Yu., Kurylenko, L.N., Shamona, O., Orlov, D., and Golubeva, O.Yu., Glass Phys. Chem., 2020, vol. 46, no. 2, pp. 155–161. https://doi.org/10.1134/S108765962002011X

    Article  CAS  Google Scholar 

  40. Bessa, R. de A., Costa, L. de S., Oliveira, C.P., Bohn, F., do Nascimento, R.F., Sasaki, J.M., and Loiola, A.R., Micropor. Mesopor. Mater., 2017, vol. 245, pp. 64–72. https://doi.org/10.1016/j.micromeso.2017.03.004

    Article  CAS  Google Scholar 

  41. Oliveira, L.C.A., Petkowicz, D.I., Smaniotto, A., and Pergher, S.B.C., Water Res., 2004, vol. 38, no. 17, pp. 3699–3704. https://doi.org/10.1016/j.watres.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  42. Andersson, J., Rosenholm, J., Areva, S., and Linden, M., Chem. Mater., 2004, vol. 16, pp. 4160–4167. https://doi.org/10.1021/cm0401490

    Article  CAS  Google Scholar 

  43. Chen, D., Tang, Q., Li, X., Zhou, X., Zang, J., Xiang, J., Xue, W., and Guo, C., Int. J. Nanomed., 2012, vol. 7, pp. 4973–4982. https://doi.org/10.2147/IJN.S35140

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences (theme no. 0081-2022-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Brazovskaya.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazovskaya, E.Y., Golubeva, O.Y. Preparation of Magnetic Zeolites for Medicinal Purposes. Pet. Chem. 63, 820–828 (2023). https://doi.org/10.1134/S0965544123050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123050055

Keywords:

Navigation