Skip to main content
Log in

Excellent Activity of Nb in Promoting Performance of ZSM-5–USY for the Catalytic Cracking of n-Hexane to Light Olefins

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

To improve the catalytic activity of zeolites in cracking of petroleum components for the production of light olefins, ZSM-5–USY composite catalysts modified with transition metals (e.g. Nb, Ni, or W) have been synthesized by an impregnation method. The catalytic performance of the obtained catalysts in the cracking of n-hexane as a model compound of petroleum for the production of light olefins has been evaluated using a fix-bed reactor. The Nb-modified composite zeolite has shown an excellent catalytic activity. The optimal Nb loading for the composite catalyst is 1.5% (1.5% Nb/Z–Y) that provides the highest amount of acid sites. The yield up to 50% and the selectivity up to 68% of the C2–C4 olefins have been achieved at 650°C. The kinetic study of the catalytic n-hexane cracking on 1.5% Nb/ZSM-5–USY has characterized it as the first-order reaction with the apparent activation energy of 115.16 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Olah, G.A., Angew. Chem. Int. Ed., 2013, vol. 52, pp. 104–107. https://doi.org/10.1002/anie.201204995

    Article  CAS  Google Scholar 

  2. Zhao, G., Teng, J., Xie, Z., Jin, W., Yang, W., Chen, Q., and Tang, Y., J. Catal., 2007, vol. 248, pp. 29–37. https://doi.org/10.1016/j.jcat.2007.02.027

    Article  CAS  Google Scholar 

  3. Hou, X., Qiu, Y., Yuan, E., Li, F., Li, Z., Ji, S., Yang, Z., Liu, G., and Zhang, X., Appl. Catal., A: Gen., 2017, vol. 543, pp. 51–60. https://doi.org/10.1016/j.apcata.2017.06.013

  4. Liu, Z. and Liang, J., Curr. Opin. Solid State Mater. Sci., 1999, vol. 4, pp. 80–84. https://doi.org/10.1016/S1359-0286(99)80015-1

    Article  CAS  Google Scholar 

  5. Dagle, V.L., Winkelman, A.D., Jaegers, N.R., SaavedraLopez, J., Hu, J., Engelhard, M.H., Habas, S.E., Akhade, S.A., Kovarik, L., Glezakou, V.-A., Rousseau, R., Wang, Y., and Dagle, R.A., ACS Catal., 2020, vol. 10, pp. 10602–10613. https://doi.org/10.1021/acscatal.0c02235

    Article  CAS  Google Scholar 

  6. de Graaf, E.A., Zwanenburg, G., Rothenberg, G., and Bliek, A., Org. Process Res. Dev., 2005, vol. 9, pp. 397–403. https://doi.org/10.1021/op050020r

    Article  CAS  Google Scholar 

  7. Tang, Z., Zhang, P., Han, W., Lu, G., and Lu, J., Reac. Kinet. Mech. Catal., 2013, vol. 108, pp. 231–239. https://doi.org/10.1007/s11144-012-0512-7

    Article  CAS  Google Scholar 

  8. Vogt, E.T.C., Whiting, G.T., Chowdhury, A.D., and Weckhuysen, B.M., Adv. Catal., 2015, vol. 58, pp. 143–314. https://doi.org/10.1016/bs.acat.2015.10.001

    Article  CAS  Google Scholar 

  9. Okuhara, T., Chem. Rev., 2002, vol. 102, pp. 3641–3666. https://doi.org/10.1021/cr0103569

    Article  CAS  PubMed  Google Scholar 

  10. Talebian-Kiakalaieh, A. and Tarighi, S., J. Ind. Eng. Chem., 2020, vol. 88, pp. 167–177. https://doi.org/10.1016/j.jiec.2020.04.009

    Article  CAS  Google Scholar 

  11. Yin, Y., Qin, L., Wang, X., Wang, G., Zhao, J., Liu, B., and Chen, Y., RSC Adv., 2016, vol. 6, pp. 111291–111298. https://doi.org/10.1039/C6RA24384C

    Article  CAS  Google Scholar 

  12. Wang, Y., Zeng, P., Li, H., Guo, Q., and Shen, B., Catal. Lett., 2017, vol. 147, pp. 1704–1713. https://doi.org/10.1007/s10562-017-2075-8

    Article  CAS  Google Scholar 

  13. Zheng, Q., Huo, L., Li, H., Mi, S., Li, X., Zhu, X., Deng, X., Shen, B., Fuel, 2017, vol. 202, pp. 563–571. https://doi.org/10.1016/j.fuel.2017.04.073

    Article  CAS  Google Scholar 

  14. Feng, R., Yan, X., Hu, X., Qiao, K., Yan, Z., and Rood, M.J., Microporous Mesoporous Mater., 2017, vol. 243, pp. 319–330. https://doi.org/10.1016/j.micromeso.2017.02.041

    Article  CAS  Google Scholar 

  15. den Hollander, M.A., Wissink, M., Makkee, M., and Moulijn, J.A., Appl. Catal., A: Gen., 2002, vol. 223, pp. 103–119. https://doi.org/10.1016/S0926-860X(01)00746-3

  16. Liu, P., Zhang, Z., Jia, M., Gao, X., and Yu, J., Chinese J. Catal., 2015, vol. 36, pp. 806–812. https://doi.org/10.1016/S1872-2067(14)60311-9

    Article  CAS  Google Scholar 

  17. Liu, C., Deng, Y., Pan, Y., Gu, Y., Qiao, B., and Gao, X., J. Mol. Catal. A: Chem., 2004, vol. 215, pp. 195–199. https://doi.org/10.1016/j.molcata.2004.02.001

    Article  CAS  Google Scholar 

  18. Liu, J., Li, Y., Chen, Z., Li, Z., Yang, Q., Hu, L., Jiang, G., Xu, C., Wang, Y., and Zhao, Z., Ind. Eng. Chem. Res., 2018, vol. 57, pp. 10327–10335. https://doi.org/10.1021/acs.iecr.8b02421

    Article  CAS  Google Scholar 

  19. Ji, Y., Yang, H., Zhang, Q., and Yan, W., J. Solid State Chem., 2017, vol. 251, pp. 7–13. https://doi.org/10.1016/j.jssc.2017.03.023

    Article  CAS  Google Scholar 

  20. Chen, H.-L., Shen, B.-J., and Pan, H.-F., Acta Phys. Chim. Sin., 2004, vol. 20, pp. 854–859. https://doi.org/10.3866/PKU.WHXB20040814

    Article  Google Scholar 

  21. Shen, B., Chen, H., Guo, J., and Pan, H., Bull. Chem. Soc. Jpn., 2005, vol. 78, pp. 2238–2244. https://doi.org/10.1246/bcsj.78.2238

    Article  CAS  Google Scholar 

  22. Li, X., Alwakwak, A.-A., Rezaei, F., and Rownaghi, A.A., ACS Appl. Energy Mater., 2018, vol. 1, pp. 2740–2748. https://doi.org/10.1021/acsaem.8b00412

    Article  CAS  Google Scholar 

  23. Xue, N., Nie, L., Fang, D., Guo, X., Shen, J., Ding, W., and Chen, Y., Appl. Catal., A, 2009, vol. 352, pp. 87–94. https://doi.org/10.1016/j.apcata.2008.09.029

    Article  CAS  Google Scholar 

  24. Wu, T., Li, S.-j., Yuan, G.-m., Zhao, D.-j., Chen, S.-l., Xu, J., and Hua, T.-y., Fuel Process. Technol., 2018, vol. 173, pp. 143–152. https://doi.org/10.1016/j.fuproc.2018.01.022

    Article  CAS  Google Scholar 

  25. Ji, Y., Yang, H., and Yan, W., Fuel, 2019, vol. 243, pp. 155–161. https://doi.org/10.1016/j.fuel.2019.01.105

    Article  CAS  Google Scholar 

  26. Maia, A.J., Louis, B., Lam, Y.L., and Pereira, M.M., J. Catal., 2010, vol. 269, pp. 103–109. https://doi.org/10.1016/j.jcat.2009.10.021

    Article  CAS  Google Scholar 

  27. Tanabe, K., Catal. Today, 1990, vol. 8, pp. 1–11. https://doi.org/10.1016/0920-5861(90)87003-L

    Article  CAS  Google Scholar 

  28. Prakash, A.M. and Kevan, L., J. Am. Chem. Soc., 1998, vol. 120, pp. 13148–13155. https://doi.org/10.1021/ja982262v

    Article  CAS  Google Scholar 

  29. Nowak, I. and Ziolek, M., Chem. Rev., 1999, vol. 99, pp. 3603–3624. https://doi.org/10.1021/cr9800208

    Article  CAS  PubMed  Google Scholar 

  30. Barros, I.C.L., Braga, V.S., Pinto, D.S., de Macedo, J.L., Filho, G.N.R., Dias, J.A., and Dias, S.C.L., Microporous Mesoporous Mater., 2008, vol. 109, pp. 485–493. https://doi.org/10.1016/j.micromeso.2007.05.050

    Article  CAS  Google Scholar 

  31. Fan, W., Zhang, Q., Deng, W., and Wang, Y., Chem. Mater., 2013, vol. 25, pp. 3277–3287. https://doi.org/10.1021/cm400192q

    Article  CAS  Google Scholar 

  32. Lima, D.S. and Perez-Lopez, O.W., Renewable Energy, 2019, vol. 136, pp. 828–836. https://doi.org/10.1016/j.renene.2019.01.051

    Article  CAS  Google Scholar 

  33. Feng, H., Li, C., and Shan, H., Appl. Clay Sci., 2009, vol. 42, pp. 439–445. https://doi.org/10.1016/j.clay.2008.05.004

    Article  CAS  Google Scholar 

  34. Viswanadham, B., Singh, S., Friedrich, H.B., and Mahomed, A.S., S. Afr. J. Chem., 2018, vol. 71, pp. 62–67. https://doi.org/10.17159/0379-4350/2018/V71a8

    Article  CAS  Google Scholar 

  35. Liu, Q., Zhang, M., Sun, L., Su, H., Zou, X., and Qi, C., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 14695–14704. https://doi.org/10.1021/acs.iecr.9b02612

    Article  CAS  Google Scholar 

  36. Fan, J., Zhang, H., Xiao, C., Mei, J., Shi, Y., Duan, A., and Jiang, G., Catal. Today, 2021, vol. 374, pp. 162–172. https://doi.org/10.1016/j.cattod.2020.12.035

    Article  CAS  Google Scholar 

  37. Pinjari, S., Kumaravelan, M.K., Peddy, V.C., Gandham, S., Patruni, J., Velluru, S., and Kumar, P., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 2781–2793. https://doi.org/10.1016/j.ijhydene.2017.12.131

    Article  CAS  Google Scholar 

  38. Han, D., Chen, Y., and Li, C., Chem. Pap., 2019, vol. 73, pp. 215–220. https://doi.org/10.1007/s11696-018-0572-x

    Article  CAS  Google Scholar 

  39. Xiaoning, W., Zhen, Z., Chunming, X., Aijun, D., Li, Z., and Guiyuan, J., J. Rare Earths, 2007, vol. 25, pp. 321–328. https://doi.org/10.1016/S1002-0721(07)60430-X

    Article  Google Scholar 

  40. Zhu, X., Liu, S., Song, Y., and Xu, L., Catal. Lett., 2005, vol. 103, pp. 201–210. https://doi.org/10.1007/s10562-005-7155-5

    Article  CAS  Google Scholar 

  41. Gould, N.S, Xu, B., J. Catal., 2016, vol. 342, pp. 193–202. https://doi.org/10.1016/j.jcat.2016.08.008

    Article  CAS  Google Scholar 

  42. Velthoen, M.E.Z., Paioni, A. L., Teune, I.E., Baldus, M., and Weckhuysen, B. M., Chem. Eur. J., 2020, vol. 26, pp. 11995–12009. https://doi.org/10.1002/chem.201905867

    Article  CAS  PubMed  Google Scholar 

  43. Albarracin Caballero, J.D., Open Access Theses, Structure-Activity Relationships of SSZ-13 And Other Small Pore Zeolites for Catalytic NOx Abatement, 2016. https://docs.lib.purdue.edu/open_access_theses/1218

  44. Anderson, J.R., Chang, Y.F., and Western, R.J., J. Catal., 1989, vol. 118, pp. 466–482. https://doi.org/10.1016/0021-9517(89)90333-3

    Article  CAS  Google Scholar 

  45. Konno, H., Okamura, T., Kawahara, T., Nakasaka, Y., Tago, T., and Masuda, T., Chem. Eng. J., 2012, vols. 207–208, pp. 490–496. https://doi.org/10.1016/j.cej.2012.06.157

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences “Transformational Technologies for Clean Energy and Demonstration” (project no. XDA21031102), the Innovation Academy for Green Manufacture of the Chinese Academy of Sciences (project nos. IAGM2019A12, IAGM2022D15), CAS Pioneer Hundred Talents Program, and K. C. Wong Education Foundation (project no. GJTD-2018-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Tao Zhang.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiao, N., Wang, H. et al. Excellent Activity of Nb in Promoting Performance of ZSM-5–USY for the Catalytic Cracking of n-Hexane to Light Olefins. Pet. Chem. 63, 718–729 (2023). https://doi.org/10.1134/S0965544123050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123050043

Keywords:

Navigation