Skip to main content
Log in

Adsorption Capacity and Biological Activity of Synthetic Zeolites

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The study investigates the physicochemical, porous/textural, and adsorptive properties, as well as the biological activity of BEA, RHO, PAU, and FAU(Y) synthetic zeolites. The adsorption capacity of the zeolites for oxytocin, lysozyme, and albumin—markers of low- and medium-molecular-weight pathological proteins—was measured. The concentration-dependent effects of the zeolites on the viability of human endothelial cells (Ea.hy926) were evaluated. At concentrations of 2.5 to 10 mg/mL, the Y zeolite was found to exhibit no pronounced cytotoxicity. In the presence of the BEA, the cell viability decreased to 80% even at 2.5 mg/mL. The RHO and PAU were shown to have the highest cytotoxicity and significantly inhibit the growth of human cells (down to 23–35%). The study demonstrated that only BEA and Y, among the synthetic zeolites tested, have good biomedical potential due to their high adsorption capacity, low hemolytic activity, and low cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The hemolytic activity is the ability to induce hemolysis, i.e. to destroy red blood cells, leading to the release of hemoglobin into the cell environment.

  2. MTT assay is a colorimetric assay for assessing cell metabolic activity.

REFERENCES

  1. Ronco, C. and Bellomo, R., Crit. Care, 2022, vol. 26, no. 135, pp. 1–12. https://doi.org/10.1186/s13054-022-04009-w

    Article  Google Scholar 

  2. Laurino, C. and Palmieri, B., Nutricion Hospitalaria, 2015, vol. 32, no. 2, pp. 573–581. https://doi.org/10.3305/nh.2015.32.2.8914

    Article  CAS  PubMed  Google Scholar 

  3. Clark W., R., Ferrari, F., La Manna, G., and Ronco, C., Contribut. Nephrol., 2017, pp. 43–57. https://doi.org/10.1159/000468911

  4. Panichev, A.M., Bogomolov, N.I., Bogatova, N.P., Silkin, S.N., and Gulkov, A.N., Zeolites in Surgery, Vladivostok: FESTU, 2004, p. 120.

  5. Souza, G., Villén, I., Viseras, F., and Perger Sibele, C., Pharmaceutics, 2023, no. 15(1352), pp. 1–33. https://doi.org/10.3390/pharmaceutics15051352

    Article  CAS  Google Scholar 

  6. Norouzian, M.A., Valizadeh, R., Khadem, A.A., Afzalzadeh, A., and Nabipour, A., Biol. Trace Element Res., 2010, vol. 137, no. 2, pp. 168–176. https://doi.org/10.1007/S12011-009-8574-8

    Article  CAS  Google Scholar 

  7. Tomeckova, V., Rehakova, M., Mojzisova, G., Wadsten, T., Zelenakova, K., and Komanicky, V., Spectroscop. Lett., 2015, vol. 49, no. 2, pp. 63–72. https://doi.org/10.18097/PBMC20226803201

    Article  Google Scholar 

  8. Amorim, R., Vilaca, N., Martinho, O., Reis, R.M., Sardo, M., Rocha, J., Fonseca, A.M., Baltazar, F., and Neves, I.C., J. Phys. Chem. C, 2012, vol. 116, no. 48, pp. 25642–25650. https://doi.org/10.1021/jp3093868

    Article  CAS  Google Scholar 

  9. Berry, T.A., Belluso, E., Vigliaturo, R., Gieré, R., Emmett, E.A., Testa, J.R., Steinhorn, G., and Wallis, S.L., Int. J. Environ. Res. Publ. Health, 2022, vol. 19, no. 4031, pp. 1–17. https://doi.org/10.3390/ijerph19074031

    Article  Google Scholar 

  10. Zhang, H., Kim, Ya., and Dutta, P.K., Micropor. Mesopor. Mater., 2006, vol. 88, nos. 1–3, pp. 312–318. https://doi.org/10.1016/J.MICROMESO.2005.09.026

    Article  CAS  Google Scholar 

  11. Tang, T., Zhang, L., Dong, H., Fang, Z., Yu, Q., and Tang, T., RSC Adv., 2017, vol. 7, pp. 7711–7717. https://doi.org/10.1039/C6RA27129D

    Article  CAS  Google Scholar 

  12. Golubeva, O.Yu. and Ul’yanova, N.Yu., Glass Phys. Chem., 2015, vol. 41, no. 5, pp. 537–544. https://doi.org/10.1134/S1087659615050065

    Article  CAS  Google Scholar 

  13. Peters, T., Adv. Protein Chem., 1985, vol. 37, pp. 161–245. https://doi.org/10.1016/s0065-3233(08)60065-0

    Article  CAS  PubMed  Google Scholar 

  14. Ganz, T., Encycloped. Respirat. Med., 2006, pp. 649–653. https://doi.org/10.1016/b0-12-370879-6/00228-3

  15. Henschen, A., Hupe, K.-P., Lottspeich, F., and Voelter, W., The Quarterly Rev. Biol., 1986, vol. 61, no. 4, pp. 532–536. https://doi.org/10.1086/415159

    Article  Google Scholar 

  16. Tas, A.C., Biomaterial., 2000, vol. 21, no. 14, pp. 1429–1438. https://doi.org/

    Article  CAS  Google Scholar 

  17. Antibacterial Peptide Protocols, Shafer, W.M., Ed., Humana Press., 1997, vol. 78, pp. 255–257.

  18. Ulyanova, N.Yu., Kurylenko, L.N., Shamova, O.V., Orlov, D.S., and Golubeva, O.Yu., Glass Phys. Chem., 2020, vol. 46, pp. 155–161. https://doi.org/10.1134/S108765962002011X

    Article  CAS  Google Scholar 

  19. Golubeva, O., Ulyanova, N., Yakovlev, A.V., Glass Phys. Chem., 2015, vol. 41, pp. 413–416. https://doi.org/10.1134/S1087659615040069

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within the State Program of ISC RAS (project no. 0081-2022-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Ul’yanova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul’yanova, N.Y., Brazovskaya, E.Y., Golubeva, O.Y. et al. Adsorption Capacity and Biological Activity of Synthetic Zeolites. Pet. Chem. 63, 790–797 (2023). https://doi.org/10.1134/S096554412305002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412305002X

Keywords:

Navigation