Skip to main content
Log in

Molybdenum-Containing Catalysts Based on Porous Aromatic Frameworks as Catalysts of Oxidation of Sulfur-Containing Compounds

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

New molybdenum-containing catalysts based on PAF-30 mesoporous carbon material for oxidation of sulfur-containing compounds (SCs) in a model fuel were synthesized. The PAF-30 support was modified with functional groups containing a positively charged nitrogen atom with various substituents. The modified supports were studied by the methods of low-temperature nitrogen adsorption/desorption, IR spectroscopy, and elemental analysis. The major factors affecting the oxidation were considered: reaction temperature and time, oxidant amount, catalyst dosage, and kind of sulfur-containing substrate. For the Мо/PAF-30-NEt3 catalyst, optimum conditions were found for oxidation of various classes of SCs in model mixtures: H2O2 : S molar ratio 6 : 1, 60°С, 60 min. The Мо/PAF-30-NEt3 catalyst operates in dibenzothiophene (DBT) oxidation during five cycles without appreciable activity loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Scheme
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Filippis, P.D. and Scarsella, M., Energy Fuels, 2003, vol. 17, no. 6, pp. 1452–1455. https://doi.org/10.1021/ef0202539

    Article  CAS  Google Scholar 

  2. Rudyakova, E.V., Sistema otsenki kachestva topliva, masel i spetsial’nykh zhidkostei (A System for Evaluating the Quality of Fuel, Oils, and Specialty Liquids), Irkutsk: Irkutskii Gos. Tekh. Univ., 2013.

  3. Kilanowski, D.R., Teeuwen, H., Beer, V.H.J., Gates, B.C., Schuit, G.C.A., and Kwart, H., J. Catal., 1978, vol. 55, no. 2, pp. 129–137. https://doi.org/10.1016/0021-9517(78)90199-9

    Article  CAS  Google Scholar 

  4. Ghubayra, R., Nuttall, C., Hodgkiss, S., Craven, M., Kozhevnikova, E.F., and Kozhevnikov, I.V., Appl. Catal. B: Environmental, 2019, vol. 253, pp. 309–316. https://doi.org/10.1016/j.apcatb.2019.04.063

    Article  CAS  Google Scholar 

  5. Lin, L., Hong, L., Jianhua, Q., and Jinjuan, X., China Petrol. Process. Petrochem. Technol., 2010, vol. 12, no. 4, pp. 1–6.

    Google Scholar 

  6. Babich, I.V. and Moulijn, J.A., Fuel, 2003, vol. 82, no. 6, pp. 607–631. https://doi.org/10.1016/S0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  7. Gridneva, E.S., Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Univ. of Engineering Ecology, 2010.

  8. Chica, A., Corma, A., and Domine, M.E., J. Catal., 2006, vol. 242, no. 2, pp. 299–308. https://doi.org/10.1016/j.jcat.2006.06.013

    Article  CAS  Google Scholar 

  9. Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., and Kabe, T., Energy Fuels, 2000, vol. 14, no. 6, pp. 1232–1239. https://doi.org/10.1021/ef000096i

    Article  CAS  Google Scholar 

  10. Mokhtar, W.W., Kader, A.A., and Bakar, A.W., Fuel Process. Technol., 2012, vol. 101, pp. 78–84. https://doi.org/10.1016/j.fuproc.2012.04.004

    Article  CAS  Google Scholar 

  11. Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., and Wasserscheid, P., Chem. Commun., 2001, no. 23, pp. 2494–2495. https://doi.org/10.1039/B108411A

    Article  Google Scholar 

  12. Sano, Y., Sugahara, K., Choi, K., Korai, Y., and Mochida, I., Fuel, 2005, vol. 84, nos. 7–8, pp. 903–910. https://doi.org/10.1016/j.fuel.2004.11.019

    Article  CAS  Google Scholar 

  13. Park, J.G., Chang, H.K., Yi, K.B., Park, J., Han, S., Cho, S., and Kim, J., Appl. Catal. B: Environmental, 2008, vol. 81, nos. 3–4, pp. 244–250. https://doi.org/10.1016/j.apcatb.2007.12.014

    Article  CAS  Google Scholar 

  14. Li, F., Zhang, Z., Feng, J., Cai, X., and Xu, P., J. Biotechnol., 2007, vol. 127, no. 2, pp. 222–228. https://doi.org/10.1016/j.jbiotec.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  15. Kareem, S.A., Aribike, D.S., Nwachukwu, S.C.U., and Latinwo, G.K., J. Environ. Sci. Eng., 2012, vol. 54, no. 1, pp. 98–103.

    CAS  PubMed  Google Scholar 

  16. Komintarachat, C. and Trakarnpruk, W., Ind. Eng. Chem. Res., 2006, vol. 45, no. 6, pp. 1853–1856. https://doi.org/10.1021/ie051199x

    Article  CAS  Google Scholar 

  17. Zhao, P.P., Zhang, M.J., Wu, Y.J., and Wang, J., Ind. Eng. Chem. Res., 2012, vol. 51, no. 19, pp. 6641–6647. https://doi.org/10.1021/ie202232j

    Article  CAS  Google Scholar 

  18. Ghorbani, N. and Moradi, G., Chin. J. Chem. Eng., 2019, vol. 27, no. 11, pp. 2759–2770. https://doi.org/10.1016/j.cjche.2019.01.037

    Article  CAS  Google Scholar 

  19. Rakhmanov, E.V., Tarakanova, A.V., Valieva, T., Akopyan, A.V., Litvinova, V.V., Maksimov, A.L., Anisimov, A.V., Vakarin, S.V., Semerikova, O.L., and Zaikov, Yu.P., Petrol. Chem., 2014, vol. 54, no. 1, pp. 48–50. https://doi.org/10.1134/S0965544114010101

    Article  CAS  Google Scholar 

  20. Akopyan, A.V., Domashkin, A.A., Polikarpova, P.D., Tarakanova, A.V., Anisimov, A.V., and Karakhanov, E.A., Theor. Found. Chem. Eng., 2018, vol. 52, pp. 894–897. https://doi.org/10.1134/S0040579518050020

    Article  CAS  Google Scholar 

  21. García-Gutierrez, J.L., Fuentes, G.A., HernandezTeran, M.E., Garcia, P., Murrieta-Guevara, F., and Jimenez-Cruz, F., Appl. Catal. A: General, 2008, vol. 334, nos. 1–2, pp. 366–373. https://doi.org/10.1016/j.apcata.2007.10.024

    Article  CAS  Google Scholar 

  22. Sundararaman, R. and Song, C., Ind. Eng. Chem. Res., 2014, vol. 53, no. 5, pp. 1890–1899. https://doi.org/10.1021/ie403445f

    Article  CAS  Google Scholar 

  23. Sikarwar, P., Kumar, U.K.A., Gosu, V., and Subbaramaiah, V., J. Environ. Chem. Eng., 2018, vol. 6, no. 2, pp. 1736–1744. https://doi.org/10.1016/j.jece.2018.02.021

    Article  CAS  Google Scholar 

  24. Akopyan, A.V., Polikarpova, P.D., Arzyaeva, N.V., Anisimov, A.V., Maslova, O.V., Senko, O.V., and Efremenko, E.N., ACS Omega, 2021, vol. 6, no. 41, pp. 26932–26941. https://doi.org/10.1021/acsomega.1c03267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dadashi, M., Mazloom, G., Akbari, A., and Banisharif, F., Environ. Sci. Pollut. Res., 2020, vol. 27, no. 24, pp. 30600–30614. https://doi.org/10.1007/s11356-020-09266-2

    Article  CAS  Google Scholar 

  26. Taghizadeh, M., Mehrvarz, E., and Taghipour, A., Rev. Chem. Eng., 2020, vol. 36, no. 7, pp. 831–858. https://doi.org/10.1515/revce-2018-0058

    Article  CAS  Google Scholar 

  27. Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S., and Zhu, G., Angew. Chem. Int. Ed., 2009, vol. 48, no. 50, pp. 9457–9460. https://doi.org/10.1002/anie.200904637

    Article  CAS  Google Scholar 

  28. Merino, E., Verde-Sesto, E., Maya, E.M., Corma, A., Iglesias, M., and Sanchez, F., Appl. Catal. A: General, 2014, vol. 469, pp. 206–212. https://doi.org/10.1016/j.apcata.2013.09.052

    Article  CAS  Google Scholar 

  29. Maximov, A., Zolotukhina, A., Kulikov, L., Kardasheva, Y., and Karakhanov, E., React. Kinet. Mech. Catal., 2016, vol. 117, pp. 729–743. https://doi.org/10.1007/s11144-015-0956-7

    Article  CAS  Google Scholar 

  30. Plietzsch, O., Schilling, C.I., Tolev, M., Nieger, M., Richert, C., Muller, T., and Brase, S., Org. Biomol. Chem., 2009, vol. 7, pp. 4734–4743. https://doi.org/10.1039/B912189G

    Article  CAS  PubMed  Google Scholar 

  31. Bazhenova, M.A., Kulikov, L.A., Bolnykh, Y.S., Maksimov, A.L., and Karakhanov, E.A., Catal. Commun., 2022, vol. 170, article 106486. https://doi.org/10.1016/j.catcom.2022.106486

  32. Lu, W., Sculley, J.P., Yuan, D., Krishna, R., Wei, Z., and Zhou, H., Angew. Chem. Int. Ed., 2012, vol. 51, no. 30, pp. 7480–7484. https://doi.org/10.1002/anie.201202176

    Article  CAS  Google Scholar 

  33. Chen, K., Xie, S., Iglesia, E., and Bell, A.T., J. Catal., 2000, vol. 189, no. 2, pp. 421–430. https://doi.org/10.1006/jcat.1999.2720

    Article  CAS  Google Scholar 

  34. Akopyan, A., Polikarpova, P., Vutolkina, A., Cherednichenko, K., Stytsenko, V., and Glotov, A., Pure Appl. Chem., 2021, vol. 93, no. 2, pp. 231–241. https://doi.org/10.1515/pac-2020-0901

    Article  CAS  Google Scholar 

  35. Houda, S., Lancelot, C., Blanchard, P., Poinel, L., and Lamonier, C., Catalysts, 2018, vol. 8, no. 9, pp. 344–369. https://doi.org/10.3390/catal8090344

    Article  CAS  Google Scholar 

  36. Jiang, W., Dong, L., Liu, W., Guo, T., Li, H.P., Zhang, M., Zhu, W.S., and Li, H.M., RSC Adv., 2017, vol. 7, pp. 55318–55325. https://doi.org/10.1039/c7ra10125b

    Article  CAS  Google Scholar 

  37. Zhu, W.S.A., Li, H.M., Gu, Q.Q., Wu, P.W., Zhu, G.P., Yan, Y.S., and Chen, G.Y., J. Mol. Catal. A: Chemical, 2011, vol. 336, pp. 16–22. https://doi.org/10.1016/j.molcata.2010.12.003

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 22-79-10044, https://rscf.ru/project/22-79-10044/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Eseva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akopyan, A.V., Eseva, E.A., Lukashov, M.O. et al. Molybdenum-Containing Catalysts Based on Porous Aromatic Frameworks as Catalysts of Oxidation of Sulfur-Containing Compounds. Pet. Chem. 63, 257–267 (2023). https://doi.org/10.1134/S0965544123010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123010103

Keywords:

Navigation