Skip to main content
Log in

An Industrial Data-Based Model to Reduce Octane Number Loss of Refined Gasoline for S Zorb Process

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

S Zorb process is one of the main technologies for deep desulfurization of gasoline from fluid catalytic cracking (FCC) process, which by the process will also cause some research octane number (RON) loss of gasoline. Establishing a data-driven model with data mining technologies to optimize production is one of the development directions in petrochemical field. Based on the industrial data from a 1.20 Mt/a S Zorb unit in China in recent three years, 422 modeling samples and 22 modeling variables were screened out and then three data-driven models were established by back propagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) to predict RON of refined gasoline (r-RON). The results show that the BPNN model has the best prediction effect and generalization ability. Genetic algorithm (GA), particle swarm optimization algorithm (PSO) and simulated annealing algorithm (SA) in combination with the BPNN model respectively were used to optimize the operation variables to reduce the r-RON loss. The results indicate that the optimized performance of PSO-BPNN model is best because of its largest reduction in r-RON loss at 48.55%. The validity of the PSO-BPNN model was verified in the S Zorb unit and the research methods to establish a data-driven model for reducing r-RON loss are also worthy of reference for other S Zorb units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Qiu, L.M., Xiang, Y.J., Xin, M.D., Zou, K., Zheng, A.G., and Xu, G.T., J. Mol. Struct., 2020, vol. 1202, pp. 127215–127215. https://doi.org/10.1016/j.molstruc.2019.127215

    Article  CAS  Google Scholar 

  2. Ribeiro e Sousa, L.R., Miranda, T., e Sousa, R.L., and Tinoco, J., Engineering, 2017, vol. 3, pp. 552–558. https://doi.org/10.1016/J.ENG.2017.04.002

    Article  Google Scholar 

  3. Ouyang, F.S., Zhang, J.H., and Fang, W.G., Pet. Sci. Technol., 2017, vol. 35, pp. 1315–1320. https://doi.org/10.1080/10916466.2017.1297826

    Article  CAS  Google Scholar 

  4. Sadighi, S., Mohaddecy, R.S., and Norouzian, A., Bull. Chem. React. Eng. Catal., 2015, vol. 10, pp. 210–220. https://doi.org/10.9767/bcrec.10.2.7171.210-220

    Article  CAS  Google Scholar 

  5. Zhu, W.B., Webb, Z.T., Mao, K., and Romagnoli, J., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 9564–9575. https://doi.org/10.1021/acs.iecr.9b00975

    Article  CAS  Google Scholar 

  6. Chang, P., Li, Z.Y., Wang, G.M., and Wang, P., Expert Syst. Appl., 2020, vol. 167, p. 114141. https://doi.org/10.1016/j.eswa.2020.114141

    Article  Google Scholar 

  7. Martínez-Martínez, J.M., Escandell-Montero, P., Soria-Olivas, E., Martín-Guerrero, J.D., and Serrano-Lópe z, A.J., Prog. Artif. Intell., 2016, vol. 5, pp. 137–154. https://doi.org/10.1007/s13748-015-0079-4

    Article  Google Scholar 

  8. Chang, Z.H., Zhang, Y., and Chen, W.B., Energy, 2019, vol. 187, p. 115804. https://doi.org/10.1016/j.energy.2019.07.134

    Article  Google Scholar 

  9. Luor, D.C., Intell. Data Anal., 2015, vol. 19, pp. 529–546. https://doi.org/10.3233/IDA-150730

    Article  Google Scholar 

  10. Duan, H.M. and Pang, X.Y., Energy, 2021, vol. 229, p. 120716. https://doi.org/10.1016/J.ENERGY.2021.120716

    Article  Google Scholar 

  11. Fang, S.E. and Chen, S., Smart Mater. Struct., 2020, vol. 29, no. 8, p. 085046. https://doi.org/10.1088/1361-665X/ab99da

    Article  Google Scholar 

  12. Cai, Y.G., Xi, M.C., and Xue, Q.H., Appl. Mech. Mater., 2014, vols. 501–504, pp. 2149–2153. https://doi.org/10.4028/www.scientific.net/AMM.501-504.2149

    Article  Google Scholar 

  13. Zhang, E.L., Hou, L., Shen, C., Shi, Y.L., and Zhang, Y.X., Meas. Sci. Technol., 2016, vol. 27, p. 015801. https://doi.org/10.1088/0957-0233/27/1/015801

    Article  CAS  Google Scholar 

  14. Liu, Xm., Liu, Jc., and Xu, Yr., J. Marine. Sci. Appl., 2002, vol. 1, pp. 16–20. https://doi.org/10.1007/BF02921411

    Article  Google Scholar 

  15. Potts, M.A.S. and Broomhead, D.S., Proc. SPIE, 1991, vol. 1565, pp. 255–266. https://doi.org/10.1117/12.49782

    Article  Google Scholar 

  16. Zhao, Y.P. and Zhou, X.L., J. Phys.: Conf. Ser., 2021, vol. 1873, p. 012074. https://doi.org/10.1088/1742-6596/1873/1/012074

    Article  Google Scholar 

  17. Yousef, W.A., Pattern Recognit. Lett., 2021, vol. 146, pp. 115–125. https://doi.org/10.1016/J.PATREC.2021.02.022

    Article  Google Scholar 

  18. Liang, F., Gao, J., and Xu, L., Int. J. Heat Mass Transf., 2020, vol. 151, p. 119394. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119394

    Article  Google Scholar 

  19. Ying, J.L. and Xiao, J.C., Appl. Mech. Mater., 2014, vols. 513–517, pp. 734–737. https://doi.org/10.4028/www.scientific.net/AMM.513-517.734

    Article  Google Scholar 

  20. Wang, H.L., Hu, Z.B., Sun, Y.Q., Su, Q.H., and Xia, X.W., Comput. Intell. Neurosci., 2018, vol. 2018, article ID 9167414. https://doi.org/10.1155/2018/9167414

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Ouyang.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wang, J., Liu, S. et al. An Industrial Data-Based Model to Reduce Octane Number Loss of Refined Gasoline for S Zorb Process. Pet. Chem. 63, 299–309 (2023). https://doi.org/10.1134/S0965544123010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123010036

Keywords:

Navigation