Skip to main content
Log in

Experimental and Kinetic Modeling of n-Heptane Hydroconversion over Mesoporous Pt/MSU Catalyst. Effect of Site Activity and Residence Time

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A zeolite-based mesostructured (MSU) molecular sieve material was synthesized, characterized, and used in the preparation of Pt (0.6 and 1 wt %) supported catalysts for hydroconversion of n-heptane under the experimental conditions of 300–450°C and 760 mmHg. Samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherm, and NH3-TPD (temperature-programmed deposition) techniques. The activity test shows that catalysts have good activity and selectivity for isomerization reaction. Also, increasing metal sites, selectivity tends to the production of aromatization reaction in the heterogeneous catalytic process. Based on experimental results, a kinetic model of this reaction was carried out. Based on other publications and combining the examined features, a network of the reaction was proposed. It can be claimed that the results of converging the feed from the kinetic model are in good agreement with the experimental results. Some of the superiorities of this model compared to other models are the determination of kinetics parameters, source of isomers, aromatic, and cracked products distinctly with emphasis on the effect of site activity and residence time over metal-acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. van de Runstraat, A., Kamp, J.A., Stobbelaar, P.J., van Grondelle, J., Krijnen, S., and van Santen, R.A., J. Catal., 1997, vol. 171, no. 1, pp. 77–84. https://doi.org/10.1006/jcat.1997.1779

    Article  CAS  Google Scholar 

  2. Zhang, A., Nakamura, I., Aimoto, K., and Fujimoto, K., Ind. Eng. Chem. Res., 1995, vol. 34, pp. 1074–1080. https://doi.org/10.1021/ie00043a008

    Article  CAS  Google Scholar 

  3. Mishra, G.S., Machado, K., and Kumar, A., J. Ind. Eng. Chem., 2014, vol. 20, pp. 2228–2235. https://doi.org/10.1016/j.jiec.2013.09.055

    Article  CAS  Google Scholar 

  4. Hajimirzaee, S., Mehr, A.S., Ghavipour, M., Vatankhah, M., and Behbahani, R.M., Petrol. Sci. Technol., 2017, vol. 35, no. 3, pp. 279–286. https://doi.org/10.1080/10916466.2016.1258413

    Article  CAS  Google Scholar 

  5. Kluksdahl, H.E., Patent US3415737A, 1968.

  6. Zhua, L. and DePristo, A.E., J. Catal., 1969, vol. 49, pp. 400–407. https://doi.org/10.1006/jcat.1997.1586

    Article  Google Scholar 

  7. Qi, W., Ran, J., Zhang, Z., Niu, J., Zhang, P., Fu, L., Hu, B., and Li, Q., Appl. Surf. Sci., 2018, vol. 435, pp. 776–785. https://doi.org/10.1016/j.apsusc.2017.11.178

    Article  CAS  Google Scholar 

  8. Liu, H., Lei, G.D., and Sachtler, W.M.H., Appl. Catal. A: Gen., 1998, vol. 146, pp. 165–180. https://doi.org/10.1016/0926-860X(96)00031-2

    Article  Google Scholar 

  9. Balakrishnan, J.H. and Schwank, J., J. Catal., 1991, vol. 127, pp. 287–306. https://doi.org/10.1016/0021-9517(91)90227-U

    Article  CAS  Google Scholar 

  10. Ponec, V. and Bond, G.C., Stud. Surf. Sci. Catal., 1995, vol. 95, no. C, pp. 583–677.

    Article  Google Scholar 

  11. Barbiera, J., Marécot, P., Del Angel, G., Bosch, P., Boitiaux, J.P., Didillon, B., Dominguez, J.M., Schiftef, I., and Espmosa, G., Appl. Catal. A: Gen., 1994, vol. 116, nos. 1–2, pp. 179–186. https://doi.org/10.1016/0926-860X(94)80288-2

    Article  Google Scholar 

  12. Siegmund Greulich-Weber, H.M., Ordered Porous Nanostructures and Applications, Wehrspohn, R., Ed., New York: Kluwer Academic Plenum, 2005, pp. 350–351.

  13. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Science, 1998, vol. 279, no. 5350, pp. 548–552. https://doi.org/10.1126/science.279.5350.548

    Article  CAS  PubMed  Google Scholar 

  14. Sachtler, W.M.H., Liu, H., and Lei, G.D., Appl. Catal. A: Gen., 1976, vol. 14, pp. 1–12.

    Google Scholar 

  15. Bagshaw, S.A., Kemmitt, T., and Milestone, N.B., Microporous Mesoporous Mater., 1998, vol. 22, pp. 419–433. https://doi.org/10.1016/S1387-1811(98)00108-5

    Article  CAS  Google Scholar 

  16. Liu, L., Li, H., and Zhang, Y., J. Phys. Chem. B, 2006, vol. 110, pp. 15478–15485. https://doi.org/10.1021/jp061875o

    Article  CAS  PubMed  Google Scholar 

  17. von Aretin, T. and Hinrichsen, O., Ind. Eng. Chem. Res., 2014, vol. 53, no. 50, pp. 19460–19470. https://doi.org/10.1021/ie503628p

    Article  CAS  Google Scholar 

  18. von Artein, T., Schallmoser, S., Standle, S., Tonigold, M., Lercher, J.A., and Hinrichsen, O., Ind. Eng. Chem. Res., 2015, vol. 54, no. 47, pp. 11792–11803. https://doi.org/10.1021/acs.iecr.5b02629

    Article  CAS  Google Scholar 

  19. Ying, L., Zhu, J., Cheng, Y., Wang, L., and Li, X., J. Ind. Eng. Chem., 2016, vol. 33, pp. 80–90. https://doi.org/10.1016/j.jiec.2015.09.021

    Article  CAS  Google Scholar 

  20. Huang, X., Aihemaitijiang, D., and Xiao, W.D., Chem. Eng. J., 2015, vol. 280, pp. 222–232. https://doi.org/10.1016/j.cej.2015.05.124

    Article  CAS  Google Scholar 

  21. Liu, Y., Zhang, W., and Pinnavaia, T.J., J. Am. Chem. Soc., 2000, vol. 122, no. 36, pp. 8791–8792. https://doi.org/10.1021/ja001615z

    Article  CAS  Google Scholar 

  22. Triantafyllidis, K.S., Iliopoulou, E.F., Antonakou, E.V., Lappas, A.A., Wang, H., and Pinnavaia, T.J., Microporous Mesoporous Mater., 2007, vol. 2007, pp. 132–139. https://doi.org/10.1016/j.micromeso.2006.09.019

    Article  CAS  Google Scholar 

  23. Gagea, B.C., Lorgouilloux, Y., Altintas, Y., Jacobs, P.A., and Martens, J.A., J. Catal., 2009, vol. 265, pp. 99–108. https://doi.org/10.1016/j.jcat.2009.04.017

    Article  CAS  Google Scholar 

  24. Maxwell, I.E., Catal. Today, 1987, vol. 1, no. 4, pp. 385–413. https://doi.org/10.1016/0920-5861(87)80006-8

    Article  CAS  Google Scholar 

  25. Vazquez, M.I., Escardino, A., and Corma, A., Ind. Eng. Chem. Res., 1987, vol. 26, no. 8, pp. 1495–1500. https://doi.org/10.1021/ie00068a001

    Article  Google Scholar 

  26. Patrigeon, A., Benazzi, E., Travers, Ch., and Bernhard, J.Y., Catal. Today, 2001, vol. 65, no. 2, pp. 149–155. https://doi.org/10.1016/S0920-5861(00)00558-7

    Article  CAS  Google Scholar 

  27. Mokaya, R., Jones, W., Moreno, S., and Poncelet, G., Catal. Lett., 1997, vol. 49, pp. 87–94. https://doi.org/10.1023/A:1019084617120

    Article  CAS  Google Scholar 

  28. Wang, Z., Guo, Y., and Lin, R., Energ. Convers. Manage., 2008, vol. 49, no. 8, pp. 2095–2099. https://doi.org/10.1016/j.enconman.2008.02.018

    Article  CAS  Google Scholar 

  29. Maloncy, M.L., Maschmeyer, T., and Jansen, J.C., Chem. Eng. J., 2005, vol. 106, no. 3, pp. 187–195. https://doi.org/10.1016/J.CEJ.2004.11.011

    Article  CAS  Google Scholar 

  30. Kadiev, K.M., Maximov, A.L., and Kadieva, M.K., Catalysts, 2021, vol. 11, no. 6, p. 676. https://doi.org/10.3390/catal11060676

    Article  CAS  Google Scholar 

  31. van der Wal, L.I., Oenema, J., Smulders, L.C.J., Samplonius, N.J., Nandpersad, K.R., Zečević, J., and de Jong, K.P., ACS Catal., 2021, vol. 11, pp. 3842–3855. https://doi.org/10.1021/acscatal.1c00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutierrez-Acebo, E., Leroux, C., Chizallet, C., Schuurman, Y., and Bouchy, C., ACS Catal., 2018, vol. 8, pp. 6035–6046. https://doi.org/10.1021/acscatal.8b00633

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touba Hamoule.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadinasab, M.J., Hamoule, T. Experimental and Kinetic Modeling of n-Heptane Hydroconversion over Mesoporous Pt/MSU Catalyst. Effect of Site Activity and Residence Time. Pet. Chem. 63, 289–298 (2023). https://doi.org/10.1134/S0965544122100140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122100140

Keywords:

Navigation