Skip to main content
Log in

Influence of the Promoter Deposition Conditions on the Catalytic Properties of Ruthenium–Cobalt Systems in the Fischer–Tropsch Synthesis

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The composition, structure, catalytic activity, and selectivity of alumina-supported cobalt catalysts promoted with ruthenium deposited by different methods were studied. The systems with bimetallic RuCo nanoparticles were studied in the Fischer–Tropsch synthesis. The catalyst containing 13.38 wt % Co and 0.11 wt % Ru, prepared by microwave-assisted promoter deposition, exhibits higher selectivity with respect to liquid products (yield of С5+ hydrocarbons 82.1%) and higher chain growth factor (α = 0.863) compared to the systems of similar composition (13.51 wt % Co, 0.13 wt % Ru), prepared using ultrasonic treatment. Microwave irradiation leads to the homogeneous distribution of bimetallic particles on the inner and outer surfaces of support pores, which results in increased yield of high-molecular-mass products in the Fischer–Tropsch process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Scholten, J.J.F., Pijpers, A.P., and Hustings, A.M.L., Catal. Rev., 1985, vol. 27, pp. 154–159.

  2. Swanson, H.E., Morris, M.C., Stinchfield, R.P., and Evans, E.H., Standard X-ray Diffraction, NBS, 1962, p. 50.

  3. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1982, 2nd ed. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984, pp. 208–209.

REFERENCES

  1. Zhang, S., Yang, X., Zhang, H., Chu, C., Zheng, K., Ju, M., and Liu, L., Molecules, 2019, vol. 24, no. 12. ID 2250. https://doi.org/10.3390/molecules24122250

  2. Abdulrasheed, A., Jalil, A.A., Gambo, Y., Ibrahim, M., Hambali, H.U., and Hamid, M.U.S., Renew. Sustain. Energy Rev., 2019, vol. 108, pp. 175–193. https://doi.org/10.1016/j.rser.2019.03.054

    Article  CAS  Google Scholar 

  3. dos Santos, R.G. and Alencar, A.C., Int. J. Hydrogen Energy, 2020, vol. 45, no. 36, pp. 18114–18132. https://doi.org/10.1016/j.ijhydene.2019.07.133

    Article  CAS  Google Scholar 

  4. Qi, Z., Chen, L., Zhang, S., Su, J., and Somorjai, G.A., Appl. Catal. A, 2020, vol. 602, ID 117701. https://doi.org/10.1016/j.apcata.2020.117701

  5. Eliseev, O.L., Kamorin, M.A., Davydov, P.E., Volkov, A.S., Kazakov, A.V., and Lapidus, A.V., Kinet. Catal., 2015, vol. 56, no. 5, pp. 625–630. https://doi.org/10.1134/S0023158415050043

    Article  CAS  Google Scholar 

  6. Gholami, Z., Tišler, Z., and Rubáš, V., Catal. Rev.–Sci. Eng., 2021, vol. 63, no. 3, pp. 512–595. https://doi.org/10.1080/01614940.2020.1762367

    Article  CAS  Google Scholar 

  7. Mirzaei, A.A., Arsalanfar, M., Bozorgzadeh, H.R., and Samimi, A., Phys. Chem. Res., 2014, vol. 2, no. 2, pp. 179–201. https://doi.org/10.22036/pcr.2014.5786

    Article  Google Scholar 

  8. Louyot, P., Neagoe, C., Galli, F., Pirola, C., Patience, G.S., and Boffito, D.C., Ultrason. Sonochem., 2018, vol. 48, pp. 523–531. https://doi.org/10.1016/j.ultsonch.2018.06.017

    Article  CAS  Google Scholar 

  9. Zhou, X., Chen, Q., Tao, Y., and Weng, H., Chin. J. Catal., 2011, vol. 32, pp. 1156–1165. https://doi.org/10.1016/S1872-2067(10)60234-3

    Article  CAS  Google Scholar 

  10. Mbuya, C.O.L., Jewell, L.L., Ntelane, T.S., and Scurrell, M.S., Rev. Chem. Eng., 2021, vol. 38, no. 6. https://doi.org/10.1515/revce-2020-0017

  11. Reubroycharoen, R., Vitidsant, T., Liu, Y., Yang, G., and Tsubaki, N., Catal. Commun., 2007, vol. 8, no. 3, pp. 375–378. https://doi.org/10.1016/j.catcom.2006.06.031

    Article  CAS  Google Scholar 

  12. Mbuya, C.O.L., Okoye-Chine, C.G., Ramutsindela, K., and Jewell, L L., React. Kinet. Mech. Catal., 2022, vol. 135, pp. 287–301. https://doi.org/10.1007/s11144-021-02129-y

    Article  CAS  Google Scholar 

  13. Linganiso, L.Z. and Scurrell, M.S., Curr. Microwave Chem., 2015, vol. 3, no. 2, pp. 157–165. https://doi.org/10.2174/2213335602666150817214240

    Article  CAS  Google Scholar 

  14. González, O., Pérez, H., Navarro, P., Almeida, L.C., Pacheco, J.G., and Montes, M., Catal. Today, 2009, vol. 148, nos. 1–2, pp. 140–147. https://doi.org/10.1016/j.cattod.2009.03.030

    Article  CAS  Google Scholar 

  15. Gaidei, T.P., Kirichenko, T.M., Novgorodov, V.N., Pashkova, T.L., and El’dkind, V.M., Katalizatory organicheskogo sinteza (Catalysts of Organic Synthesis), Leningrad: Gos. Inst. Prikl. Khimii, 1974, p. 22.

  16. Khosravi-Nikou, M. and Bahrami, A., Energy Sources, Part A, 2015, vol. 37, no. 19, pp. 2041–2046. https://doi.org/10.1080/15567036.2011.604372

    Article  CAS  Google Scholar 

  17. Rößler, S., Kern, C., and Jess, A., Catal. Sci. Technol., 2019, vol. 9, pp. 4047–4054. https://doi.org/10.1039/C9CY00671K

    Article  Google Scholar 

  18. Song, S., Lee, S., Bae, J.W., Prasad, P.S., and Jun, K., Catal. Commun., 2008, vol. 9, no. 13, pp. 2282–2286. https://doi.org/10.1016/j.catcom.2008.05.023

    Article  CAS  Google Scholar 

  19. Novak, S., Madon, R.J., and Suhl, H., J. Catal., 1982, vol. 77, pp. 141–151. https://doi.org/10.1016/0021-9517(82)90154-3

    Article  CAS  Google Scholar 

  20. Novak, S., Madon, R.J., and Suhl, H., J. Chem. Phys., 1981, vol. 74, pp. 6083–6091. https://doi.org/10.1063/1.441051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Mazurova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurova, K.M., Miyassarova, A.F., Kazantsev, R.V. et al. Influence of the Promoter Deposition Conditions on the Catalytic Properties of Ruthenium–Cobalt Systems in the Fischer–Tropsch Synthesis. Pet. Chem. 62, 1308–1314 (2022). https://doi.org/10.1134/S0965544122100115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122100115

Keywords:

Navigation