Skip to main content
Log in

Modern Processes for Petrochemistry Based on Acetylene (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review provides an analysis of recent publications focused on the promising methods for producing various valuable chemicals from acetylene. In particular, it discusses the main reactions of acetylene that produce large-tonnage, low-tonnage, and special-purpose chemicals. Furthermore, the paper highlights the most important approaches to the design of catalysts and formulates priority lines for the future development of acetylene chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. IEA. Hydrogen. https://www.iea.org/reports/hydrogen

  2. Bilera, I.V. and Lebedev, Y.A., Petrol. Chem., 2022, vol. 62, no. 4, pp. 329–351. https://doi.org/10.1134/S0965544122010145

    Article  CAS  Google Scholar 

  3. Voronin, V.V. Ledovskaya, M.S., Bogachenkov, A.S., Rodygin, K.S., and Ananikov, V.P., Molecules, 2018, vol. 23, no. 10, pp. 1–84. https://doi.org/10.3390/molecules23102442

    Article  CAS  Google Scholar 

  4. Schobert, H., Chem. Rev., 2014, vol. 114, no. 3, pp. 1743–1760. https://doi.org/10.1021/cr400276u

    Article  CAS  Google Scholar 

  5. Stang, P. and Diederich, F., Modern Acetylene Chemistry, Heppenheim: Wiley-VCH, 2008.

  6. Diederich, F., Stang, P.J., and Tykwinski, R.R., Acetylene chemistry. Chemistry, Biology and Material Science, Heppenheim: Wiley-VCH, 2006.

  7. Passler, P., Hefner, W., Buckl, K., Meinass, H., Meiswinkel, A., Wernicke, H.-J., Ebersberg, G., Bassler, J., Behringer, H., and Mayer, D., Acetylene, Ullmann’s Encyclopedia of Industrial Chemistry, Heppenheim: Wiley-VCH, 2011, 7th ed., pp. 1–52.

  8. Trotuş, I.T., Zimmermann, T., and Schüth, F., Chem. Rev., 2014, vol. 114, no. 3, pp. 1761–1782. https://doi.org/10.1021/cr400357r

    Article  CAS  Google Scholar 

  9. Byuro NTD. Proizvodstvo osnovnykh organicheskikh khimicheskih veshchestv, Informatsionno-tekhnicheskii spravochnik po nailuchshim dostupnym tekhnologiyam ITS 18-2019 (Bureau of BAT. Production of Basic Organic Chemicals, Information and Technical Guide to Best Available Techniques), Moscow: Byuro NTD, 2019.

  10. Production Capacity of Ethylene Worldwide from 2018 to 2025. https://www.statista.com/statistics/1067372/global-ethylene-production-capacity

  11. Market Volume of Benzene Worldwide from 2015 to 2020, with a forecast for 2021 to 2026. https://www.statista.com/statistics/1245172/benzene-market-volume-worldwide/

  12. Production Capacity of Vinyl Chloride Monomer Worldwide in 2018 and 2023. https://www.statista.com/statistics/1063677/global-vinyl-chloride-monomer-production-capacity/

  13. Production Capacity of Acetic acid Worldwide in 2018 and 2023. https://www.statista.com/statistics/1063215/acetic-acid-production-capacity-globally

  14. Production Capacity of Butadiene Worldwide in 2018 and 2025. https://www.statista.com/statistics/1067436/global-butadiene-production-capacity//

  15. Market Volume of Acrylic acid Worldwide from 2015 to 2020, with a Forecast for 2021 to 2026. https://www.statista.com/statistics/1245262/acrylic-acid-market-volume-worldwide//

  16. Global Acrylonitrile Industry. https://www.globenewswire.com/news-release/2020/08/22/2082254/0/en/Global-Acrylonitrile-Industry.html

  17. Vinyl acetate. Chemical Economics Handbook. https://ihsmarkit.com/products/vinyl-acetate-chemical-economics-handbook.html

  18. Isoprene Market: Growth, Trends, COVID-19 impact, and forecasts (2021–2026). https://www.mordorintelligence.com/industry-reports/isoprene-market

  19. World Butanediol (BDO) Production Volume to Go Beyond 2.49 Mln Tonnes in 2017. https://mcgroup.co.uk/news/20140516/butanediol-bdo-production-volume-249-mln-tonnes.html

  20. Market Volume of Acetaldehyde Worldwide from 2015 to 2020, with a Forecast for 2021 to 2026. https://www.statista.com/statistics/1245235/acetaldehyde-market-volume-worldwide

  21. Stewart, C.A., Chloroprene, Kirk-Othmer Encyclopedia of Chemical Technology, Weinheim: Wiley-VCH, 2014, 5th ed., pp. 1–9. https://doi.org/10.1002/0471238961.0308121519200523.a01.pub2

  22. Plate, N.A. and Slivinskii, E.V., Osnovy khimii i tekhnologii monomerov (Fundamentals of Chemistry and Technology of Monomers), Moscow:: Nauka, 2002.

  23. Ohara, T., Sato, T., Shimizu, N., Prescher, G., Schwind, H., Weiberg, O., Marten, K., Greim, H., Shaffer, T.D., and Nandi, P., Acrylic Acid and Derivatives, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2020, 7th ed., pp. 1–21. https://doi.org/10.1002/14356007.a01_161.pub4

  24. Lin, T.J., Meng, X., and Shi, L., Ind. Engin. Chem. Res., 2013, vol. 52, no. 39, pp. 14125–14132. https://doi.org/10.1016/j.cej.2016.11.043

    Article  CAS  Google Scholar 

  25. Tang, C., Zeng, Y., Cao, P., Yang, X., and Wang, G., Catal. Lett., 2009, vol. 129, nos. 1–2, pp. 189–193. https://doi.org/10.1007/s10562-008-9789-6

    Article  CAS  Google Scholar 

  26. Yang, X., Wang, X., Wang, G., Yao, J., and Zeng, Y., Patent China CN106831425, 2015.

  27. Cui, L., Yang, X., Zeng, Y., Chen, Y., and Wang, G., Mol. Catal., 2019, vol. 468, pp. 57–61. https://doi.org/10.1016/j.mcat.2019.02.015

    Article  CAS  Google Scholar 

  28. Lin, T.J., Meng, X., and Shi, L., Appl. Catal. A: General, 2014, vol. 485, pp. 163–171. https://doi.org/10.1016/j.apcata.2014.07.036

    Article  CAS  Google Scholar 

  29. Lin, T.J., Meng, X., and Shi, L., J. Mol. Catal. A: Chemical, 2015, vol. 396, pp. 77–83. https://doi.org/10.1016/j.molcata.2014.09.027

    Article  CAS  Google Scholar 

  30. Lin, T.J., Xie, H., Meng, X., and Shi, L., Catal. Commun., 2015, vol. 68, pp. 88–92. https://doi.org/10.1016/j.catcom.2015.04.032

    Article  CAS  Google Scholar 

  31. Xie, H., Lin, T., Shi, L., and Meng, X., RSC Adv., 2016, vol. 6, no. 99, pp. 97285–97292. https://doi.org/10.1039/c6ra17567h

    Article  Google Scholar 

  32. Li, Y., Yan, L., Zhang, Q., Yan, B., and Cheng, Y., RSC Adv., 2020, vol. 10, no. 3, pp. 1634–1638. https://doi.org/10.1039/c9ra09737f

    Article  CAS  Google Scholar 

  33. Choi, H.S., Park, J.H., Bae, J.W., Lee, J.H., and Chang, T.S., Catal. Commun., 2019, vol. 123., 2018, pp. 86–90. https://doi.org/10.1016/j.catcom.2019.02.009

    Article  CAS  Google Scholar 

  34. Hu, G., Guo, D., Shang, H., Sun, Y., Zeng, J., Li, J., and Zhu, M., Catal. Lett., 2020, vol. 150, no. 3, pp. 674–682. https://doi.org/10.1007/s10562-019-02985-3

    Article  CAS  Google Scholar 

  35. Hu, G., Guo, D., Shang, H., Sun, Y., Zeng, J., and Li, J., ChemistrySelect, 2020, vol. 5, no. 10, pp. 2940–2948. https://doi.org/10.1002/slct.201904667

    Article  CAS  Google Scholar 

  36. Tang, C.M., Zeng, Y., Yang, X.G., Lei, Y.C., and Wang, G.Y., J. Mol. Catal. A: Chemical, 2009, vol. 314, nos. 1–2, pp. 15–20. https://doi.org/10.1016/j.molcata.2009.08.008

    Article  CAS  Google Scholar 

  37. Tang, C.M., Li, X.L., and Wang, G.Y., Korean J. Chem. Eng., 2012, vol. 29, no. 12, pp. 1700–1707. https://doi.org/10.1007/s11814-012-0073-5

    Article  CAS  Google Scholar 

  38. Chen, X., Zhu, H., Wang, T., Li, C., Yan, L., Jiang, M., Liu, J., Sun, X., Jiang, Z., and Ding, Y., J. Mol. Catal. A: Chemical, 2016, vol. 414, pp. 37–46. https://doi.org/10.1016/j.molcata.2015.12.025

    Article  CAS  Google Scholar 

  39. Xie, H., Yi, D., Shi, L., and Meng, X., Chem. Eng. J., 2017, vol. 313, pp. 663–670. https://doi.org/10.1016/j.cej.2016.11.043

    Article  CAS  Google Scholar 

  40. Liu, N., Xie, H., Cao, H., Shi, L., and Meng, X., Fuel, 2019, vol. 242, pp. 617–623. https://doi.org/10.1016/j.fuel.2018.12.092

    Article  CAS  Google Scholar 

  41. Hou, J., Xie, J.-H., and Zhou, Q.-L., Angew. Chem., 2015, vol. 127, no. 21, pp. 6400–6403. https://doi.org/10.1002/ange.201501054

    Article  Google Scholar 

  42. Hou, J., Yuan, M.L., Xie, J.H., and Zhou, Q.L., Green Chem., 2016, vol. 18, no. 10, pp. 2981–2984. https://doi.org/10.1039/c6gc00549g

    Article  CAS  Google Scholar 

  43. Weissermel, K. and Arpe, H.-J., Industrial Organic Chemistry, New York: VCH Publishers, 1997. 3rd ed.

  44. Eckert, M., Fleischmann, G., Jira, R., Bolt, H.M., and Golka, K., Acetaldehyde, Ullmann’s Encyclopedia of Industrial Chemistry, Heppenheim: Wiley-VCH, 2006, 7th ed., pp. 1–18. https://doi.org/10.1002/14356007.a01_031.pub2

  45. Yee, K.K., Wong, Y.L., Zha, M., Adhikari, R.Y., Tuominen, M.T., He, J., and Xu, Z., Chem. Commun., 2015, vol. 51, no. 54, pp. 10941–10944. https://doi.org/10.1039/c5cc03943f

    Article  CAS  Google Scholar 

  46. Onyestyák, G. and Kalló, D., J. Mol. Catal. A: Chemical, 1996, vol. 106, nos. 1–2, pp. 103–108. https://doi.org/10.1016/1381-1169(95)00265-0

    Article  Google Scholar 

  47. Kalló, D. and Onyestyák, G., Zeolites, 1996, vol. 17, nos. 5–6, pp. 489–494. https://doi.org/10.1016/S0144-2449(96)00074-7

    Article  Google Scholar 

  48. Kalló, D. and Onyestyák, G., Helv. Chim. Acta, 2001, vol. 84, pp. 1157–1162. https://doi.org/10.1002/1522-2675(20010516)84:5<1157::AID-HLCA1157>3.0.CO;2-7

    Article  Google Scholar 

  49. Onyestyák, G. and Kalló, D., Micropor. Mesopor. Mater., 2003, vol. 61, nos. 1–3, pp. 199–204. https://doi.org/10.1016/S1387-1811(03)00368-8

    Article  CAS  Google Scholar 

  50. Onyestyák, G., Pál-Borbély, G., and Kalló, D., Stud. Surface Sci. Catal., 2004, vol. 154, no. C, pp. 2831–2838. https://doi.org/10.1016/s0167-2991(04)80561-5

    Article  Google Scholar 

  51. Wang, Q., Zhu, M., Zhang, H., Xu, C., Dai, B., and Zhang, J., Catal. Commun., 2019, vol. 120, pp. 33–37. https://doi.org/10.1016/j.catcom.2018.07.002

    Article  CAS  Google Scholar 

  52. Wang, Q., Zhu, M., Xu, C., Zhang, H., Wang, X., Dai, B., and Zhang, J., New J. Chem., 2018, vol. 42, no. 8, pp. 6507–6514. https://doi.org/10.1039/c8nj00707a

    Article  CAS  Google Scholar 

  53. Wang, Q., Zhu, M., Zhang, H., Xu, C., Dai, B., and Zhang, J., ChemistrySelect, 2018, vol. 3, no. 33, pp. 9603–9609. https://doi.org/10.1002/slct.201801706

    Article  CAS  Google Scholar 

  54. Wang, Q., Zhu, M., Dai, B., and Zhang, J., Chinese Chem. Lett., 2019, vol. 30, no. 6, pp. 1244–1248. https://doi.org/10.1016/j.cclet.2019.03.049

    Article  CAS  Google Scholar 

  55. Wang, Q., Zhu, M., Dai, B., and Zhang, J., Catal. Sci. Technol., 2019, vol. 9, no. 4, pp. 981–991. https://doi.org/10.1039/c8cy02246a

    Article  CAS  Google Scholar 

  56. Wang, Q., Zhang, S., Yu, Y., and Dai, B., Catal. Commun., 2020, vol. 147, pp. 106122. https://doi.org/10.1016/j.catcom.2020.106122

    Article  CAS  Google Scholar 

  57. Yang, L., Chen, H., Su, R., Xu, C., and Dai, B., Catal. Lett., 2018, vol. 148, no. 11, pp. 3370–3377. https://doi.org/10.1007/s10562-018-2534-x

    Article  CAS  Google Scholar 

  58. Yang, L., Xiao, F., Zhang, Q., Xu, C., and Dai, B., ChemistrySelect, 2019, vol. 4, no. 24, pp. 7096–7101. https://doi.org/10.1002/slct.201900954

    Article  CAS  Google Scholar 

  59. Rodygin, K.S., Lotsman, K.A., and Ananikov, V.P., ChemSusChem., 2020, vol. 13, no. 14, pp. 3679–3685. https://doi.org/10.1002/cssc.202000760

    Article  CAS  Google Scholar 

  60. Folkins, H.O., Benzene, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, 7th ed., pp. 1–32. https://doi.org/10.1002/14356007.a03_475

  61. Wörz, A.S., Judai, K., Abbet, S., Antonietti, J.M., Heiz, U., Del Vitto, A., Giordano, L., and Pacchioni, G., Chem. Phys. Lett., 2004, vol. 399, nos. 1–3, pp. 266–270. https://doi.org/10.1016/j.cplett.2004.10.027

    Article  CAS  Google Scholar 

  62. Judai, K., Wörz, A.S., Abbet, S., Antonietti, J.M., Heiz, U., Del Vitto, A., Giordano, L., and Pacchioni, G., Phys. Chem. Chem. Phys., 2005, vol. 7, no. 5, pp. 955–962. https://doi.org/10.1039/b414399j

    Article  CAS  Google Scholar 

  63. Sorek, E., Arbiv, G., and Asscher, M., Langmuir, 2020, vol. 36, no. 28, pp. 8066–8074. https://doi.org/10.1021/acs.langmuir.0c00592

    Article  CAS  Google Scholar 

  64. Tian, M., Liu, B.S., Hammonds, M., Wang, N., Sarre, P.J., and Cheung, A.S.C., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 18, pp. 6603–6610. https://doi.org/10.1039/c2cp23309f

    Article  CAS  Google Scholar 

  65. Zhao, T.Q., Li, Q., Liu, B.S., Gover, R.K.E., Sarre, P.J., and Cheung, A.S.C., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 5, pp. 3489–3496. https://doi.org/10.1039/c5cp06425b

    Article  CAS  Google Scholar 

  66. Tian, M., Liu, B.S., Hammonds, M., Wang, N., Sarre, P.J., and Cheung, A.S.C., Philosoph. Transact. Royal Soc. A: Mathem., Phys., Eng. Sci., 2013, vol. 371., 20110590. https://doi.org/10.1098/rsta.2011.0590

  67. Lee, W., Lee, T., Jang, H.G., Cho, S.J., Choi, J., and Ha, K.S., Catal. Today, 2018, vol. 303, pp. 177–184. https://doi.org/10.1016/j.cattod.2017.09.014

    Article  CAS  Google Scholar 

  68. Lee, T., Bae, Y., Jeon, J., Kim, J., Choi, J., and Ha, K.S., Catal. Today, 2020, vol. 352, pp. 183–191. https://doi.org/10.1016/j.cattod.2020.01.004

    Article  Google Scholar 

  69. Ko, S.H., Lee, T., Park, H., Ahn, D.S., Kim, K., Kwon, Y., Cho, S.J., and Ryoo, R., J. Am. Chem. Soc., 2018, vol. 140, no. 23, pp. 7101–7107. https://doi.org/10.1021/jacs.8b00900

    Article  CAS  Google Scholar 

  70. Boudjahem, A.G., Monteverdi, S., Mercy, M., and Bettahar, M.M., Appl. Catal. A: General, 2003, vol. 250, no. 1, pp. 49–64. https://doi.org/10.1016/S0926-860X(03)00221-7

    Article  CAS  Google Scholar 

  71. Rosenthal, U., Org. Biomol. Chem., 2021, vol. 647, no. 12, pp. 1246–1249. https://doi.org/10.1002/zaac.202100108

    Article  CAS  Google Scholar 

  72. Jones, G.O. and Krebs, Z.J., Org. Biomol. Chem., 2017, vol. 15, no. 39, pp. 8326–8333. https://doi.org/10.1039/c7ob01885a

    Article  CAS  Google Scholar 

  73. Gordeev, E.G., Pentsak, E.O., and Ananikov, V.P., J. Am. Chem. Soc., 2020, vol. 142, no. 8, pp. 3784–3796. https://doi.org/10.1021/jacs.9b10887

    Article  CAS  Google Scholar 

  74. Dahlmann, M., Grub, J., and Löser, E., Butadiene, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2011, 7th ed., pp. 1–24. https://doi.org/10.1002/14356007.a04_431.pub2

  75. Nishiwaki, K.-I., Kobayashi, M., Takeuchi, T., Matuoto, K., and Osakada, K., J. Mol. Catal. A: Chemical, 2001, vol. 175, nos. 1–2, pp. 73–81. https://doi.org/10.1016/S1381-1169(01)00232-1

    Article  CAS  Google Scholar 

  76. Tachiyama, T., Yoshida, M., Aoyagi, T., and Fukuzumi, S., Appl. Organomet. Chem., 2008, vol. 22, no. 4, pp. 205–210. https://doi.org/10.1002/aoc.1365

    Article  CAS  Google Scholar 

  77. Tachiyama, T., Yoshida, M., Aoyagi, T., and Fukuzumi, S., J. Phys. Org. Chem., 2008, vol. 21, no. 6, pp. 510–515. https://doi.org/10.1002/poc.1373

    Article  CAS  Google Scholar 

  78. Liu, J., Zuo, Y., Han, M., Wang, Z., and Wang, D., J. Natural Gas Chem., 2012, vol. 21, no. 5, pp. 495–500. https://doi.org/10.1016/S1003-9953(11)60396-4

    Article  CAS  Google Scholar 

  79. You, Y., Luo, J., Xie, J., and Dai, B., Catal., 2017, vol. 7, no. 12, p. 394. https://doi.org/10.3390/catal7120394

    Article  CAS  Google Scholar 

  80. You, Y., Luo, J., Xie, J., Zhang, J., and Dai, B., Catal., 2018, vol. 8, no. 8, p. 337 https://doi.org/10.3390/catal8080337

    Article  CAS  Google Scholar 

  81. Zhang, Q., Li, C., Luo, J., Xie, J., Zhang, J., and Dai, B., Catal. Commun., 2020, vol. 136, p. 105922. https://doi.org/10.1016/j.catcom.2019.105922

    Article  CAS  Google Scholar 

  82. Zhang, Q., Li, C., Luo, J., Xie, J., Zhang, J., and Dai, B., Catal. Lett., 2020, vol. 150, no. 6, pp. 1766–1773. https://doi.org/10.1007/s10562-019-03088-9

    Article  CAS  Google Scholar 

  83. Liu, J., Han, M., and Wang, Z., J. Energ. Chem., 2013, vol. 22, no. 4, pp. 599–604. https://doi.org/10.1016/S2095-4956(13)60078-9

    Article  CAS  Google Scholar 

  84. Liu, J., Zuo, Y., Han, M., and Wang, Z., J. Chem. Technol. Biotechnol., 2013, vol. 88, no. 3, pp. 408–414. https://doi.org/10.1002/jctb.3860

    Article  CAS  Google Scholar 

  85. Liu, H., Xie, J., Liu, P., and Dai, B., Catal., 2016, vol. 6, no. 8, p. 120. https://doi.org/10.3390/catal6080120

    Article  CAS  Google Scholar 

  86. Li, C., Luo, J., Zhang, Q., Xie, J., Zhang, J., and Dai, B., New J. Chem., 2019, vol. 43, no. 34, pp. 13608–13615. https://doi.org/10.1039/c9nj02182e

    Article  CAS  Google Scholar 

  87. Li, C., Luo, J., Zhang, Q., Xie, J., Zhang, J., and Dai, B., Indust. Eng. Chem. Res., 2020, vol. 59, no. 1, pp. 110–117. https://doi.org/10.1021/acs.iecr.9b05881

    Article  CAS  Google Scholar 

  88. Li, C., Xie, J., Zhang, J., and Dai, B., Catal. Lett., 2021, vol. 151, no. 10, pp. 2990–2995. https://doi.org/10.1007/s10562-021-03548-1

    Article  CAS  Google Scholar 

  89. Ryu, J.Y., Patent JP 4869598, 2002.

  90. Lamberov, A.A., Il’yasov, I.R., Egorova, S.R., Nazarov, M.V., and Shatilov, V.M., Catal. Indust., 2009, vol. 1, no. 3, pp. 229–236. https://doi.org/10.1134/s2070050409030118

    Article  Google Scholar 

  91. Il’yasov, I.R., Nazarov, M.V., Laskin, A.I., Lamberov, A.A., Bikmurzin, A.S., Shatilov, V.M., and Nazmieva, I.F., Catal. Indust., 2011, vol. 3, no. 1, pp. 96–101. https://doi.org/10.1134/S2070050411010181

    Article  Google Scholar 

  92. Bridier, B., Karhánek, D., Pérez-Ramírez, J., and López, N., ChemCatChem., 2012, vol. 4, no. 9, pp. 1420–1427. https://doi.org/10.1002/cctc.201200021

    Article  CAS  Google Scholar 

  93. Insorn, P. and Kitiyanan, B., Catal. Today, 2015, vol. 256, no. 2, pp. 223–230. https://doi.org/10.1016/j.cattod.2015.01.042

    Article  CAS  Google Scholar 

  94. Insorn, P. and Kitiyanan, B., Catal., 2016, vol. 6, no. 12, pp. 199–210. https://doi.org/10.3390/catal6120199

    Article  CAS  Google Scholar 

  95. Zhen, B., Chen, W., Jia, Z., Han, M., and Wu, Q., Catal. Lett., 2014, vol. 144, no. 12, pp. 2216–2220. https://doi.org/10.1007/s10562-014-1385-3

    Article  CAS  Google Scholar 

  96. Mascavage, L.M., Zhang-Plasket, F., Sonnet, P.E., and Dalton, D.R., Tetrahedron, 2008, vol. 64, no. 40, pp. 9357–9367. https://doi.org/10.1016/j.tet.2008.07.081

    Article  CAS  Google Scholar 

  97. Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W., Steffan, G., Diehl, H., Bosche, H., Schneider, K., Kieczka, H., and Pinkos, R., Butanediols, Butenediol, and Butynediol, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2019, pp. 1–12. https://doi.org/10.1002/14356007.a04

  98. Pinkos, R., Lorenz, R.E., and Beste, Y.A., Patent EP 2118044, 2007.

  99. Pinkos, R., Lorenz, R.E., and Beste, Y.A., Patent WO 2008098620, 2008.

  100. Pinkos, R., L.orenz, R.E., and Beste, Y.A., Patent US7759531, 2010.

  101. Madon, R., Nagel, P., Hedrick, S., and Thakur, D., Patent US 9308522, 2006.

  102. Li, H., Ban, L., Wang, Z., Meng, P., Zhang, Y., Wu, R., and Zhao, Y., Nanomaterials, 2019, vol. 9, no. 6, p. 842. https://doi.org/10.3390/nano9060842

    Article  CAS  Google Scholar 

  103. Yang, G., Xu, Y., Su, X., Xie, Y., Yang, C., Dong, Z., and Wang, J., Ceram. Int., 2014, vol. 40, no. 3, pp. 3969–3973. https://doi.org/10.1016/j.ceramint.2013.08.044

    Article  CAS  Google Scholar 

  104. Yang, G., Yu, Y., Tahir, M.U., Ahmad, S., Su, X., Xie, Y., and Wang, J., React. Kinet., Mechan., Catal., 2019, vol. 127, no. 1, pp. 425–436. https://doi.org/10.1007/s11144-019-01561-5

    Article  CAS  Google Scholar 

  105. Wang, Z., Niu, Z., Hao, Q., Ban, L., Li, H., Zhao, Y., and Jiang, Z., Catal., 2019, vol. 9, no. 1, p. I5. https://doi.org/10.3390/catal9010035

  106. Gao, J., Yang, G., Li, H., Dong, M., Wang, Z., and Li, Z., Processes, 2019, vol. 7, no. 2, p. 198. https://doi.org/10.3390/pr7040198I

    Article  CAS  Google Scholar 

  107. Liu, S., Peng, W., Zhang, J., Tong, Y., Yuan, J., Qi, X., Yan, X., Sun, D., and Dai, B., Energy Sourc., Part A, 2018, vol. 40, no. 19, pp. 2327–2333. https://doi.org/10.1080/15567036.2018.1487484

    Article  CAS  Google Scholar 

  108. Wang, Z., Ban, L., Meng, P., Li, H., and Zhao, Y., Nanomaterials, 2019, vol. 9, no. 7, p. 1038. https://doi.org/10.3390/nano9071038

    Article  CAS  Google Scholar 

  109. Wang, Z., Ban, L., Meng, P., Li, H., and Zhao, Y., Nanomaterials, 2019, vol. 9, no. 8, pp. 11–13. https://doi.org/10.3390/nano9081137

    Article  CAS  Google Scholar 

  110. Li, H., Ban, L., Niu, Z., Huang, X., Meng, P., Han, X., Zhang, Y., Zhang, H., and Zhao, Y., Nanomaterials, 2019, vol. 9, no. 9, p. 1301. https://doi.org/10.3390/nano9091301

    Article  CAS  Google Scholar 

  111. Lukas, J., Risto, E., and Timo, W. V, Patent DE 102017214043, 2016.

  112. Kuriyama, W., Matsumoto, T., Ogata, O., Ino, Y., Aoki, K., Tanaka, S., Kobayashi, T., Sayo, N., and Saito, T., Org. Proc. Res. Develop., 2012, vol. 16, no. 1, pp. 166–171. https://doi.org/10.1021/op200234j

    Article  CAS  Google Scholar 

  113. Telkar, M.M., Rode, C.V., Jaganathan, R., Rane, V.H., and Chaudhari, R.V., J. Mol. Catal A: Chemical, 2002, vol. 187, no. 1, pp. 81–93. https://doi.org/10.1016/S1381-1169(01)00457-5

    Article  CAS  Google Scholar 

  114. Rode, C.V., J. Japan Petrol. Inst., 2008, vol. 51, no. 3, pp. 119–133. https://doi.org/10.1627/jpi.51.119

    Article  CAS  Google Scholar 

  115. Tanielyan, S.K., More, S.R., Augustine, R.L., and Schmidt, S.R.,Org. Proc. Res. Develop., 2017, vol. 21, no. 3, pp. 327–335. https://doi.org/10.1021/acs.oprd.6b00375

    Article  CAS  Google Scholar 

  116. Bienewald, F., Leibold, E., Tužina, P., and Roscher, G., Vinyl Esters, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH., 2019, 7th ed., pp. 1–16. https://doi.org/10.1002/14356007.a27_419.pub2

  117. Hou, C.Y., Feng, L.R., and Qiu, F.L., Chinese Chem. Lett., 2009, vol. 20, no. 7, pp. 865–868. https://doi.org/10.1016/j.cclet.2009.01.027

    Article  CAS  Google Scholar 

  118. Yan, F.W., Guo, C.Y., Yan, F., Li, F.B., Qian, Q.L., and Yuan, G.Q., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 5, pp. 796–801. https://doi.org/10.1134/S0036024410050158

    Article  CAS  Google Scholar 

  119. Wu, X., He, P., Wang, X., and Dai, B., Chem. Eng. J., 2017, vol. 309, pp. 172–177. https://doi.org/10.1016/j.cej.2016.09.090

    Article  CAS  Google Scholar 

  120. He, P., Wu, X., Huang, L., Zhu, M., Wang, X., and Dai, B., Catal. Commun., 2018, vol. 112, pp. 5–9. https://doi.org/10.1016/j.catcom.2018.02.022

    Article  CAS  Google Scholar 

  121. He, P., Huang, L., Wu, X., Xu, Z., Zhu, M., Wang, X., and Dai, B., Catal., 2018, vol. 8, no. 6, p. 239. https://doi.org/10.3390/catal8060239I

    Article  Google Scholar 

  122. Hu, L., Xu, Z., He, P., Wang, X., Tian, Z., Yuan, H., Yu, F., and Dai, B., Catal. Lett., 2020, vol. 150, no. 4, pp. 1155–1162. https://doi.org/10.1007/s10562-019-02971-9

    Article  CAS  Google Scholar 

  123. Dreher, E.-L., Beutel, K.K., Myers, J.D., Lübbe, T., Krieger, S., and Pottenger, L.H., Chloroethanes and Chloroethylenes, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2014, 7th ed., pp. 1–81. https://doi.org/10.1002/14356007.o06_o01.pub2

  124. Flid, M.R., Catal. Indust., 2009, vol. 1, no. 4, pp. 285–293. https://doi.org/10.1134/s2070050409040047

    Article  Google Scholar 

  125. Zhang, J., Liu, N., Li, W., and Dai, B., Front. Chem. Sci. Eng., 2011, vol. 5, no. 4, pp. 514–520. https://doi.org/10.1007/s11705-011-1114-z

    Article  CAS  Google Scholar 

  126. Conte, M., Carley, A.F., Attard, G., Herzing, A.A., Kiely, C.J., and Hutchings, G.J., J. Catal., 2008, vol. 257, no. 1, pp. 190–198. https://doi.org/10.1016/j.jcat.2008.04.024

    Article  CAS  Google Scholar 

  127. Conte, M., Davies, C.J., Morgan, D.J., Davies, T.E., Elias, D.J., Carley, A.F., Johnston, P., and Hutchings, G.J., J. Catal., 2013, vol. 297, pp. 128–136. https://doi.org/10.1016/j.jcat.2012.10.002

    Article  CAS  Google Scholar 

  128. Wang, S., Shen, B., and Song, Q., Catal. Lett., 2010, vol. 134, nos. 1–2, pp. 102–109. https://doi.org/10.1007/s10562-009-0216-4

    Article  CAS  Google Scholar 

  129. Zhang, H., Dai, B., Wang, X., Xu, L., and Zhu, M., J. Indust. Eng. Chem., 2012, vol. 18, no. 1, pp. 49–54. https://doi.org/10.1016/j.jiec.2011.11.075

    Article  CAS  Google Scholar 

  130. Zhang, H., Dai, B., Wang, X., Li, W., Han, Y., Gu, J., and Zhang, J., Green Chem., 2013, vol. 15, no. 3, pp. 829–836. https://doi.org/10.1039/c3gc36840h

    Article  CAS  Google Scholar 

  131. Kaiser, S.K., Fako, E., Manzocchi, G., Krumeich, F., Hauert, R., Clark, A.H., Safonova, O.V., López, N., and Pérez-Ramírez, J., Nature Catal., 2020, vol. 3, no. 4, pp. 376–385. https://doi.org/10.1038/s41929-020-0431-3

    Article  CAS  Google Scholar 

  132. Wang, B., Lai, H., Yue, Y., Sheng, G., Deng, Y., He, H., Guo, L., Zhao, J., and Li, X., Catal., 2018, vol. 8, no. 9, p. 359. https://doi.org/10.3390/catal8090351

    Article  CAS  Google Scholar 

  133. Yu, Z., Patent WO2011050614, 2011.

  134. Zhang, H., Zhang, J., Li, X., Man, B., Zhang, C., and Dai, B., Patent CN 108262072, 2017.

  135. Li, X., Zhao, J., Zhang, Q., Feng, F., Yang, Q., Deng, Y., Lai, H., and Yu, Y., Patent CN 107803222, 2017.

  136. Cai, M., Zhang, H., Man, B., Li, J., Li, L., Li, Y., Xie, D., Deng, R., and Zhang, J., Catal. Sci. Technol., 2020, vol. 10, no. 11, pp. 3552–3560. https://doi.org/10.1039/d0cy00512f

    Article  CAS  Google Scholar 

  137. Wang, B., Yue, Y., Jin, C., Lu, J., Wang, S., Yu, L., Guo, L., Li, R., Hu, Z.T., Pan, Z., Zhao, J., and Li, X., Appl. Catal. B: Environ., 2020, vol. 272, p. 118944. https://doi.org/10.1016/j.apcatb.2020.118944

    Article  CAS  Google Scholar 

  138. Wang, L., Wang, F., Wang, J., Tang, X., Zhao, Y., Yang, D., Jia, F., and Hao, T., React. Kinet., Mechan., Catal., 2013, vol. 110, no. 1, pp. 187–194. https://doi.org/10.1007/s11144-013-0580-3

    Article  CAS  Google Scholar 

  139. Wang, L., Wang, F., and Wang, J., New J. Chem., 2016, vol. 40, no. 4, pp. 3019–3023. https://doi.org/10.1039/c5nj03338a

    Article  CAS  Google Scholar 

  140. Zhou, K., Jia, J., Li, X., Pang, X., Li, C., Zhou, J., Luo, G., and Wei, F., Fuel Proc. Technol., 2013, vol. 108, pp. 12–18. https://doi.org/10.1016/j.fuproc.2012.03.018

    Article  CAS  Google Scholar 

  141. Sheng, W., Liu, B., and Zheng, L., Patent CN 103623837, 2016.

  142. Zhai, Y., Zhao, J., Di, X., Di, S., Wang, B., Yue, Y., Sheng, G., Lai, H., Guo, L., Wang, H., and Li, X., Catal. Sci. Technol., 2018, vol. 8, no. 11, pp. 2901–2908. https://doi.org/10.1039/c8cy00291f

    Article  CAS  Google Scholar 

  143. Han, Y., Wang, Y., Wang, Y., Hu, Y., Nian, Y., Li, W., and Zhang, J., Appl. Organomet. Chem., 2021, vol. 35, no. 1, p. 6066. https://doi.org/10.1002/aoc.6066

    Article  CAS  Google Scholar 

  144. Lian, L., Wang, L., Yan, H., Ali, S., Wang, J., Zhao, L., Yang, C., Wu, R., and Ma, L., J. Mater. Res. Technol., 2020, vol. 9, no. 6, pp. 14961–14968. https://doi.org/10.1016/j.jmrt.2020.10.072I

    Article  CAS  Google Scholar 

  145. Li, X., Pan, X., and Bao, X., J. Energ. Chem., 2014, vol. 23, no. 2, pp. 131–135. https://doi.org/10.1016/S2095-4956(14)60126-1

    Article  CAS  Google Scholar 

  146. Chao, S., Zou, F., Wan, F., Dong, X., Wang, Y., Wang, Y., Guan, Q., Wang, G., and Li, W., Sci. Rep., 2017, vol. 7, p. 39789. https://doi.org/10.1038/srep39789

    Article  CAS  Google Scholar 

  147. Li, X., Li, P., Pan, X., Ma, H., and Bao, X. Appl. Catal. B: Environ., 2017, vol. 210, pp. 116–120. https://doi.org/10.1016/j.apcatb.2017.03.046

    Article  CAS  Google Scholar 

  148. Qiao, X., Zhao, C., Zhou, Z., Guan, Q., and Li, W., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 21, pp. 17979–17989. https://doi.org/10.1021/acssuschemeng.9b04767

    Article  CAS  Google Scholar 

  149. Wang, L., Patent CN 101596459, 2009.

  150. Jiang, W., Zhou, Y., Yang, Q., Luo, Q., and Li, J., Patent CN 102380407, 2011.

  151. Zhang, J., Zhang, H., Zhang, H., Li, W., and Dong, Y., Patent CN 104785238, 2014.

  152. Mitchenko, S.A., Khomutov, E.V., Shubin, A.A., and Shul’ga, Y.M., J. Mol. Catal A: Chemical, 2004, vol. 212, nos. 1–2, pp. 345–352. https://doi.org/10.1016/j.molcata.2003.11.021

    Article  CAS  Google Scholar 

  153. Mitchenko, R.S., Shubin, A.A., and Vdovichenko, A.N., Theor. Exp. Chem., 2006, vol. 42, no. 3, pp. 186–189. https://doi.org/10.1007/s11237-006-0036-1

    Article  CAS  Google Scholar 

  154. Mitchenko, S.A., Krasnyakova, T.V., Mitchenko, R.S., and Korduban, A.N., J. Mol. Catal. A: Chemical, 2007, vol. 275, no. 1–2, pp. 101–108. https://doi.org/10.1016/j.molcata.2007.05.036

    Article  CAS  Google Scholar 

  155. Mitchenko, S.A., Khomutov, E.V., Vdovichenko, A.N., Zhikharev, I.V., Popov, A.F., and Beletskaya, I.P., Inorg. Chim. Acta, 2001, vol. 320, nos. 1–2, pp. 38–46. https://doi.org/10.1016/S0020-1693(01)00480-7

    Article  CAS  Google Scholar 

  156. Mitchenko, S.A. Ananikov, V.P., Beletskaya, I.P., and Ustynyuk, Y.A., Mendeleev Commun., 1997, vol. 7, no. 4, pp. 130–131. https://doi.org/10.1070/MC1997v007n04ABEH000715

    Article  Google Scholar 

  157. Conte, M., Carley, A.F., Heirene, C., Willock, D.J., Johnston, P., Herzing, A.A., Kiely, C.J., and Hutchings, G.J., J. Catal., 2007, vol. 250, no. 2, pp. 231–239. https://doi.org/10.1016/j.jcat.2007.06.018

    Article  CAS  Google Scholar 

  158. Conte, M., Davies, C.J., Morgan, D.J., Davies, T.E., Carley, A.F., Johnston, P., and Hutchings, G.J., Catal. Sci. Technol., 2013, vol. 3, no. 1, pp. 128–134. https://doi.org/10.1039/c2cy20478a

    Article  CAS  Google Scholar 

  159. Org. Proc. Res. Develop, Conte, M., Elias, D., Lu, L., Morgan, D.J., Freakley, S.J., Johnston, P., Kiely, C.J., and Hutchings, G.J., Catal. Sci. Technol., 2016, vol. 6, no. 13, pp. 5144–5153. https://doi.org/10.1039/c6cy00090h

  160. Chao, S., Guan, Q., and Li, W., J. Catal., 2015, vol. 330, pp. 273–279. https://doi.org/10.1016/j.jcat.2015.07.008

    Article  CAS  Google Scholar 

  161. Luo, G., Zhou, K., Wang, W., and Wei, F., Patent US 20140213437, 2014.

  162. Zhou, K., Wang, W., Zhao, Z., Luo, G., Miller, J.T., Wong, M.S., and Wei, F., ACS Catal., 2014, vol. 4, no. 9, pp. 3112–3116. https://doi.org/10.1021/cs500530f

    Article  CAS  Google Scholar 

  163. Luo, G., Wang, W., Li, X., and Wei, F., Patent CN 101947465, 2010.

  164. Zhang, J., Yang, X., Wang, P., Gao, Y., and Yang, Z., Patent CN 109746012, 2019.

  165. Johnston, P., Carthey, N., and Hutchings, G.J., J. Am. Chem. Soc., 2015, vol. 137, no. 46, pp. 14548–14557. https://doi.org/10.1021/jacs.5b07752

    Article  CAS  Google Scholar 

  166. Davies, C.J., Miedziak, P.J., Brett, G.L., and Hutchings, G.J., Chinese J. Catal., 2016, vol. 37, no. 10, pp. 1600–1607. https://doi.org/10.1016/S1872-2067(16)62482-8

    Article  CAS  Google Scholar 

  167. Malta, G., Freakley, S.J., Kondrat, S.A., and Hutchings, G.J., Chem. Commun., 2017, vol. 53, no. 86, pp. 11733–11746. https://doi.org/10.1039/c7cc05986h

    Article  CAS  Google Scholar 

  168. Zhao, W., Li, W., and Zhang, J., Catal. Sci. Technol., 2016, vol. 6, no. 5, pp. 1402–1409. https://doi.org/10.1039/c5cy01277e

    Article  CAS  Google Scholar 

  169. Wang, X., Xie, D., Wang, X., Yang, X., Li, G., and Zhou, J. Patent CN 105251502, 2006.

  170. Zhong, J., Liu, R., and Org. Proc. Res. Develop , Patent CN 106944151, 2017.

  171. Zhang, X., Ren, Y., Wang, F., Li, H., and Wu, B., Patent CN 109158126, 2019.

  172. Li, W., Zhang, J., Dai, B., Zhang, H., Pu, Y., Yu, L., Wang, X., Dai, H., Zhang, M., Guo, C., and Zhao, W., Patent CN 104549401, 2013.

  173. Li, X., Pan, X., Yu, L., Ren, P., Wu, X., Sun, L., Jiao, F., and Bao, X., Nature Commun., 2014, vol. 5, p. 3688. https://doi.org/10.1038/ncomms4688

    Article  CAS  Google Scholar 

  174. Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.X., Fu, Q., Ma, X., Xue, Q., Sun, G., and Bao, X., Chem. Mater., 2011, vol. 23, no. 5, pp. 1188–1193. https://doi.org/10.1021/cm102666r

    Article  CAS  Google Scholar 

  175. Weitz, H.M. and Loser, E., Isoprene, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, 7th ed., pp. 83–102. https://doi.org/10.1002/14356007.a14

  176. Trofimov, B.A., Curr. Org. Chem., 2002, vol. 6, no. 13, pp. 1121–1162. https://doi.org/10.2174/1385272023373581

    Article  CAS  Google Scholar 

  177. Trofimov, B.A., Nosyreva, V.V., and Mal’kina, A.G., Russ. J. Org. Chem., 2005, vol. 41, no. 9, pp. 1254–1259. https://doi.org/10.1007/s11178-005-0331-7

    Article  CAS  Google Scholar 

  178. Trofimov, B.A., Morozova, B.V., Mikhaleva, A.I., Tatarinova, I.V., Markova, M.V., and Henkelmann, J., J. Appl. Polymer Sci., 2011, vol. 116, no. 5, pp. 2658–2667. https://doi.org/10.1002/app.30471

    Article  CAS  Google Scholar 

  179. Oparina, L.A., Shaikhudinova, S.I., Parshina, L.N., Vysotskaya, O.V., Preiss, T., Henkelmann, J., and Trofimov, B.A., Russ. J. Org. Chem., 2005, vol. 41, no. 5, pp. 656–660. https://doi.org/10.1007/s11178-005-0222-y

    Article  CAS  Google Scholar 

  180. Gao, Y., Patent CN 104045518, 2014.

  181. Lai C. Tan, P., Chen, Q., Tao, C., Yu, W., Wang, X., Li, J., and Org. Proc. Res. Develop , Patent CN 105924330, 2016.

  182. Chen, Q., Tan, P., Lai, C., Tao, C., Yu, W., Wang, X., Li, J., and Org. Proc. Res. Develop , Patent CN 106117010, 2016.

  183. Rebrov, E.V., Klinger, E.A., Berenguer-Murcia, A., Sulman, E.M., and Schouten, J.C., Org. Proc. Res. Develop., 2009, vol. 13, no. 5, pp. 991–998. https://doi.org/10.1021/op900085b

    Article  CAS  Google Scholar 

  184. Protasova, L.N., Rebrov, E.V., Choy, K.L., Pung, S.Y., Engels, V., Cabaj, M., Wheatley, A.E.H., and Schouten, J.C., Catal. Sci. Technol., 2011, vol. 1, no. 5, pp. 768–777. https://doi.org/10.1039/c1cy0074h

    Article  Google Scholar 

  185. Cherkasov, N., Al-Rawashdeh, M., Ibhadon, A.O., and Rebrov, E.V., Catal. Today, 2016, vol. 273, pp. 205–212. https://doi.org/10.1016/j.cattod.2016.03.028

    Article  CAS  Google Scholar 

  186. Semagina N. Renken, A., Laub, D., and Kiwi-Minsker, L., J. Catal., 2007, vol. 246, no. 2, pp. 308–314. https://doi.org/10.1016/j.jcat.2006.12.011

    Article  CAS  Google Scholar 

  187. Semagina, N. and Kiwi-Minsker, L., Catal. Lett., 2009, vol. 127, nos. 3–4, pp. 334–338. https://doi.org/10.1007/s10562-008-9684-1

    Article  CAS  Google Scholar 

  188. Crespo-Quesada, M., Yarulin, A., Jin, M., Xia, Y., and Kiwi-Minsker, L., J. Am. Chem. Soc., 2011, vol. 133, no. 32, pp. 12787–12794. https://doi.org/10.1111/j.1746-8361.1998.tb00052.x

    Article  CAS  Google Scholar 

  189. Kiwi-Minsker, L. and Crespo-Quesada, M., Topics in Catal., 2012, vol. 55, nos. 7–10, pp. 486–491. https://doi.org/10.1007/s11244-012-9815-1

    Article  CAS  Google Scholar 

  190. Okhlopkova, L.B., Matus, E.V., Prosvirin, I.P., Kerzhentsev, M.A., and Ismagilov, Z.R., J. Nanoparticle Res., 2015, vol. 17, no. 12, pp. 1–15. https://doi.org/10.1007/s11051-015-3289-6

    Article  CAS  Google Scholar 

  191. Okhlopkova, L.B., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2018, vol. 59, no. 3, pp. 347–356. https://doi.org/10.1134/S0023158418030163

    Article  CAS  Google Scholar 

  192. González-Fernández, A., Pischetola, C., and Cárdenas-Lizana, F., Catal., 2019, vol. 9, no. 11, p. 924 https://doi.org/10.3390/catal9110924

    Article  CAS  Google Scholar 

  193. González-Fernández, A., Berenguer-Murcia, Á., CazorlaAmorós, D., and Cárdenas-Lizana, F., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 25, pp. 28158–28168. https://doi.org/10.1021/acsami.0c05285

    Article  CAS  Google Scholar 

  194. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Gvozdovskaya, K.L., Zherdev, V.V., Dashabylova, T.M., and Schmidt, F.K., Kinet. Catal., 2020, vol. 61, no. 4, pp. 575–588. https://doi.org/10.1134/S0023158420030209

    Article  CAS  Google Scholar 

  195. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Levchenko, A.S., and Schmidt, F.K., Kinet. Catal., 2021, vol. 62, no. 2, pp. 299–306. https://doi.org/10.1134/S0023158421020099

    Article  CAS  Google Scholar 

  196. Shesterkina, A.A., Strekalova, A.A., Shuvalova, E.V., Kapustin, G.I., Tkachenko, O.P., and Kustov, L.M., Catal., 2021, vol. 11, no. 5, p. 625. https://doi.org/10.3390/catal11050625

    Article  CAS  Google Scholar 

  197. Kuśtrowski, P., Chmielarz, L., Bozek, E., Sawalha, M., and Roessner, F., Mater. Res. Bull., 2004, vol. 39, no. 2, pp. 263–281. https://doi.org/10.1016/j.materresbull.2003.09.032

    Article  CAS  Google Scholar 

  198. Heller, B., Sundermann, B., Buschmann, H., Drexler, H.J., You, J., Holzgrabe, U., Heller, E., and Oehme, G., J. Org. Chem., 2002, vol. 67, no. 13, pp. 4414–4422. https://doi.org/10.1021/jo011032n

    Article  CAS  Google Scholar 

  199. Movassaghi, M., Hill, M.D., and Ahmad, O.K., J. Am. Chem. Soc., 2007, vol. 129, no. 33, pp. 10096–10097. https://doi.org/10.1021/ja073912a

    Article  CAS  Google Scholar 

  200. Neely, J.M. and Rovis, T., Org. Chem. Front., 2014, vol. 1, no. 8, pp. 1010–1015. https://doi.org/10.1039/c4qo00187g

    Article  CAS  Google Scholar 

  201. Zhang, F., Lai, Q., Shi, X., and Song, Z., Chinese Chem. Lett., 2019, vol. 30, no. 2, pp. 392–394. https://doi.org/10.1016/j.cclet.2018.05.036

    Article  CAS  Google Scholar 

  202. Suresh Kumar Reddy, K., Srinivasakannan, C., and Raghavan, K.V., Catal. Surveys from Asia, 2012, vol. 16, no. 1, pp. 28–35. https://doi.org/10.1007/s10563-011-9129-5

    Article  CAS  Google Scholar 

  203. Suresh Kumar Reddy, K., Sreedhar, I., and Raghavan, K.V., Appl. Catal. A: General, 2008, vol. 339, no. 1, pp. 15–20. https://doi.org/10.1016/j.apcata.2008.01.004

    Article  CAS  Google Scholar 

  204. Jiang, Y., Kuang, C., and Yang, Q., Synlett, 2009, no. 19, pp. 3163–3166. https://doi.org/10.1055/s-0029-1218346

    Article  CAS  Google Scholar 

  205. Takizawa, K., Nulwala, H., Thibault, R.J., Lowenhielm, P., Yoshinaga, K., Wooley, K.L., and Hawker, C.J., J. Polymer Sci., Part A: Polymer Chem., 2008, vol. 46, pp. 2897–2912. https://doi.org/10.1002/pola.22627

    Article  CAS  Google Scholar 

  206. Tsai, Y.H., Chanda, K., Chu, Y.T., Chiu, C.Y., and Huang, M.H., Nanoscale, 2014, vol. 6, no. 15, pp. 8704–8709. https://doi.org/10.1039/c4nr02076f

    Article  CAS  Google Scholar 

  207. Pourhassan, F. and Eshghi, H., Catal. Lett., 2020, vol. 150, no. 5, pp. 1287–1300. https://doi.org/10.1007/s10562-019-03031-y

    Article  CAS  Google Scholar 

  208. Trofimov, B.A. and Schmidt, E.Y., Acc. Chem. Res., 2018, vol. 51, no. 5, pp. 1117–1130. https://doi.org/10.1021/acs.accounts.7b00618

    Article  CAS  Google Scholar 

  209. Ledovskaya, M.S., Voronin, V.V., Rodygin, K.S., and Ananikov, V.P., Synthesis, 2022, vol. 54, no. 4, pp. 999–1042. https://doi.org/10.1055/a-1654-2318

    Article  CAS  Google Scholar 

  210. Irrgeher, M., Schmidt, H., Bretterbauer, K., Gabriel, H., and Schwarzinger, C., Monatshefte fur Chemie, 2011, vol. 142, no. 8, pp. 849–854. https://doi.org/10.1007/s00706-011-0511-9

    Article  CAS  Google Scholar 

  211. Yan, L., Chu, B., Zhong, S., Fu, Z., and Cheng, Y., Chem. Eng. J. Adv., 2020, vol. 2, p. 100018. https://doi.org/10.1016/j.ceja.2020.100018

    Article  CAS  Google Scholar 

  212. Louven, Y., Haus, M.O., Konrad, M., Hofmann, J.P., and Palkovits, R., Green Chem., 2020, vol. 22, no. 14, pp. 4532–4540. https://doi.org/10.1039/d0gc01043j

    Article  CAS  Google Scholar 

  213. Rodygin, K.S., Bogachenkov, A.S., and Ananikov, V.P., Molecules, 2018, vol. 23, no. 3, p. 648. https://doi.org/10.3390/molecules230306483

    Article  Google Scholar 

  214. Fu, R. and Li, Z., J. Chem. Res., 2017, vol. 41, no. 6, pp. 341–345. https://doi.org/10.3184/174751917X14949427622099

    Article  CAS  Google Scholar 

  215. Falbe, J., Bahrmann, H., Lipps, W., and Mayer, D., Alcohols, Aliphatic, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, 7th ed., pp. 235–262. https://doi.org/10.1002/14356007.a01_279

  216. Bonrath, W., Englert, B., Karge, R., and Schneider, M., Patent WO 2003029175, 2002.

  217. Klass, K., Hahn, T., and Henkelmann, J., Patent WO 2005082822, 2004.

  218. Vicari, M., Rudloff, M., Kramer, A., and Drews, R., Patent WO 2005019144, 2004.

  219. Mao, T., Wu, Q., Liu, T., Mu, Q., Zhu, J., and Zhang, Q., Patent CN 108358749, 2018.

  220. Tomilin, D.N., Petrova, O.V., Sobenina, L.N., Mikhaleva, A.I., and Trofimov, B.A., Chem. Heterocycl. Compd., 2013, vol. 49, no. 2, pp. 341–344. https://doi.org/10.1007/s10593-013-1252-y

    Article  CAS  Google Scholar 

  221. Shmidt, E.Y., Bidusenko, I.A., Protsuk, N.I., Mikhaleva, A.I., and Trofimov, B.A., Russ. J. Org. Chem., 2013, vol. 49, no. 1, pp. 8–11. https://doi.org/10.1134/S1070428013010028

    Article  CAS  Google Scholar 

  222. Sobenina, L.N., Tomilin, D.N., Petrova, O.V., Mikhaleva, A.I., and Trofimov, B.A., Russ. J. Org. Chem., 2013, vol. 49, no. 3, pp. 356–359. https://doi.org/10.1134/S107042801303007X

    Article  CAS  Google Scholar 

  223. Sum, Y.N., Yu, D., and Zhang, Y., Green Chem., 2013, vol. 15, no. 10, pp. 2718–2721. https://doi.org/10.1039/c3gc41269e

    Article  CAS  Google Scholar 

  224. Joannet, E., Horny, C., Kiwi-Minsker, L., and Renken, A., Chem. Eng. Sci., 2002, vol. 57, no. 16, pp. 3453–3460. https://doi.org/10.1016/S0009-2509(02)00215-4

    Article  CAS  Google Scholar 

  225. Telkar, M.M., Rode, C.V., Rane, V.H., and Chaudhari, R.V., Catal. Commun., 2005, vol. 6, no. 11, pp. 725–730. https://doi.org/10.1016/j.catcom.2005.07.009

    Article  CAS  Google Scholar 

  226. Isaeva, V.I., Tkachenko, O.P., Afonina, E.V., Kozlova, L.M., Kapustin, G.I., Grünert, W., Solov’eva, S.E., Antipin, I.S., and Kustov, L.M., Micropor. Mesopor. Mater., 2013, vol. 166, pp. 167–175. https://doi.org/10.1016/j.micromeso.2012.04.030

    Article  CAS  Google Scholar 

  227. Wu, Z., Gaudino, E.C., Rotolo, L., Medlock, J., Bonrath, W., and Cravotto, G., Chem. Eng. Proc.: Process Intensification, 2016, vol. 110, pp. 220–224. https://doi.org/10.1016/j.cep.2016.10.016

    Article  CAS  Google Scholar 

  228. Wu, H., Guo, L., Ma, F., Wang, Y., Mo, W., Fan, X., Li, H., Yu, Y., Mian, I., and Tsubaki, N., Catal. Sci. Technol., 2019, vol. 9, no. 23, pp. 6598–6605. https://doi.org/10.1039/c9cy01195a

    Article  CAS  Google Scholar 

  229. Shu, M., Shi, C., Yu, J., Chen, X., Liang, C., and Si, R., Catal. Sci. Technol., 2020, vol. 10, no. 2, pp. 327–331. https://doi.org/10.1039/c9cy01877h

    Article  CAS  Google Scholar 

  230. Li, H., Wang, X., Chen, X., Li, C., Wang, M., Yi, Y., Ji, M., Wang, H., Shao, Z., and Liang, C., Catal. Lett., 2020, vol. 150, no. 8, pp. 2150–2157. https://doi.org/10.1007/s10562-020-03125-y

    Article  CAS  Google Scholar 

  231. Bellabarba, R.M., J. Fluor. Chem., 2021, vol. 244. 109741. https://doi.org/10.1016/j.jfluchem.2021.109741

  232. Akana, J.A., Bhattacharyya, K.X., Müller, P., and Sadighi, J.P., J. Am. Chem. Soc., 2007, vol. 129, no. 25, pp. 7736–7737. https://doi.org/10.1021/ja0723784

    Article  CAS  Google Scholar 

  233. Bi, Q.Y., Qian, L., Xing, L.Q., Tao, L.P., Zhou, Q., Lu, J.Q., and Luo, M.F., J. Fluor. Chem., 2009, vol. 130, no. 6, pp. 528–533. https://doi.org/10.1016/j.jfluchem.2009.03.001

    Article  CAS  Google Scholar 

  234. Lee, Y.-H., Kim, J.-D., Kim, J., Kim, H., and Lee, Y.-W., Korean J. Chem. Eng., 2009, vol. 26, no. 3, pp. 702–704 https://doi.org/10.1007/s11814-009-0117-7

    Article  CAS  Google Scholar 

  235. Flid, V.R., Gringolts, M.L., and Shamsiev, R.S., Finkelshtein, E.S., Russ. Chem. Rev., 2018, vol. 87, no. 12, pp. 1169–1205. https://doi.org/10.1070/rcr4834

    Article  CAS  Google Scholar 

  236. Strel’chik, B.S., Smagin, V.M., Chernykh, S.P., Temkin, O.N., Stychinskii, G.F., and Belen’kii, V.M., Patent RF 2228324, 2004.

  237. Xu, Z., Ye, J., and Cao, Q., Patent CN 1266094, 2003.

  238. Chen, S., Patent CN 100543001, 2006.

  239. Qiu, X., Wei, W., Chen, K., Lu, T., Jin, F., Ye, D., and Sun, S., Patent CN 104099123, 2013.

  240. Zou, J., Zhang, X., Pei, H., Yang, W., Pan, L., Wang, Q., Ma, B., Qin, Z., and Li, S., Patent CN 112979407, 2021.

  241. Zou, J., Zhang, X., Pei, H., Yang, W., Pan, L., Wang, Q., Ma, B., Qin, Z., and Li, S., Patent CN 112961020, 2021.

  242. Zou, J., Zhang, X., Pei, H., Yang, W., Pan, L., Wang, Q., Ma, B., Qin, Z., and Li, S., Patent CN 112979404, 2021.

Download references

Funding

The study described here was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Bedenko.

Ethics declarations

A.L. Maximov and K.I. Dement’ev, co-authors, are the Chief Editor and a Deputy Chief Editor, respectively, at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedenko, S.P., Dement’ev, K.I. & Maximov, A.L. Modern Processes for Petrochemistry Based on Acetylene (A Review). Pet. Chem. 62, 989–1026 (2022). https://doi.org/10.1134/S0965544122090031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122090031

Keywords:

Navigation