Skip to main content
Log in

ZSM-5/Fe3O4 and ZSM-5/Fibrous Cellulose as Two Durable and Recyclable Adsorbents for Efficient Removal of Asphaltenes from Crude Oil

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Asphaltenes are one of the heaviest fractions of crude oil, which causes it to settle and deposit into the reservoir rock or extraction and transfer pipes. So far, various methods have been proposed to separate or remove asphaltenes, and among them, the adsorption of asphaltenes using nanoparticles is one of the most efficient method. In this way, two strong, durable, and recyclable adsorbents towards adsorption of asphaltenes from crude oil were synthesized by incorporation of Fe3O4 and fibrous silica (KCC-1) nanoparticles (NPs) into ZSM-5 zeolite nanocrystals. Structural, physical and surface characteristic properties of the adsorbents were studied by FTIR, XRD, VSM, BET, FE-SEM, and TEM analyses. In order to optimize the asphaltenes adsorption process, the effect of some parameters such as asphaltenes concentration, temperature and the amounts of adsorbents was studied. The asphaltenes adsorption isotherms were suitably correlated to the Langmuir model for ZSM-5/Fe3O4 as well as ZSM-5/KCC-1 nanoparticles, which suggests the monolayer adsorption of asphaltenes onto the nanoparticles through a self-association as assumed in the literature. Kinetic results showed that asphaltenes is rapidly adsorbed by the nanoparticles within about 2 h. By comparing the quasi-first-order and quasi-second-order kinetic models, it was found that the quasi-second-order kinetic model well predicts the adsorption kinetic of the asphaltenes on each of the ZSM-5/ Fe3O4 and ZSM-5/ KCC-1 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Nassar, N.N., Hassan, A., and Pereira-Almao, P., Energy Fuels, 2011, vol. 25, pp. 3961–3965. https://doi.org/10.1021/ef2008387

    Article  CAS  Google Scholar 

  2. Adams, J.J., Energy Fuels, 2014, vol. 28, pp. 2831–2856. https://doi.org/10.1021/ef500282p

    Article  CAS  Google Scholar 

  3. Wang, S., Liu, Q., Tan, X., Xu, C., and Gray, M.R., Colloids Surf. A, 2016, vol. 504, pp. 280–286. https://doi.org/10.1016/j.colsurfa.2016.05.086

    Article  CAS  Google Scholar 

  4. González, M.F., Stull, C.S., López-Linares, F., and Pereira-Almao, P., Energy Fuels, 2007, vol. 21, pp. 234–241. https://doi.org/10.1021/ef060196+

    Article  CAS  Google Scholar 

  5. Chilingarian, G.V. and Yen, T.F., in Developments in Petroleum Science, 2000, vol. 40, pt. B, pp. 1–5. https://doi.org/10.1016/S0376-7361(09)70272-9

    Article  Google Scholar 

  6. González, M.O., Kharisov, B.I., Quezada, T.S., Kharissova, O.V., Hernández, L.G., and de la Fuente, I.G., J. Dispersion Sci. Technol., 2019, vol. 40, pp. 1121–1128. https://doi.org/10.1080/01932691.2018.1496838

    Article  CAS  Google Scholar 

  7. Raj, G., Larkin, E., Lesimple, A., Commins, P., Whelan, J., and Naumov, P., Energy Fuels, 2019, vol. 33, pp. 2030–2036. https://doi.org/10.1021/acs.energyfuels.8b04246

    Article  CAS  Google Scholar 

  8. Gharbi, K., Benyounes, K., and Khodja, M., J. Pet. Sci. Eng. 2017, vol. 158, pp. 351–360. https://doi.org/10.1016/j.petrol.2017.08.062

  9. Mazloom, M.S., Hemmati-Sarapardeh, A., Husein, M.M., Behbahani, H.S., and Zendehboudi, S., Fuel, 2020, vol. 279, p. 117763. https://doi.org/10.1016/j.fuel.2020.117763

    Article  CAS  Google Scholar 

  10. Castillo, J., Vargas, V., Piscitelli, V., Ordoñez, L., and Rojas, H., J. Pet. Sci. Eng., 2017, vol. 151, pp. 248–253. https://doi.org/10.1016/j.petrol.2017.01.019

    Article  CAS  Google Scholar 

  11. Hosseini, S.A., Hagjoo, R., and Baninaam, M., Pet. Sci. Technol., 2019, vol. 37, pp. 2330–2337. https://doi.org/10.1080/10916466.2018.1522336

    Article  CAS  Google Scholar 

  12. Nasseri, M.A., Kazemnejadi, M., Mahmoudi, B., Assadzadeh, F., Alavi, S.A., and Allahresani, A., J. Nanopart. Res., 2019, vol. 21, p. 214. https://doi.org/10.1007/s11051-019-4643-x

    Article  CAS  Google Scholar 

  13. Franco, C.A., Montoya, T., Nassar, N.N., PereiraAlmao, P., and Cortés, F.B., Energy Fuels, 2013, vol. 27, pp. 7336–7347. https://doi.org/10.1021/ef4018543

    Article  CAS  Google Scholar 

  14. Setoodeh, N., Darvishi, P., and Lashanizadegan, A., J. Disper. Sci. Technol., 2018, vol. 39, pp. 452–459. https://doi.org/10.1080/01932691.2017.1326310

    Article  CAS  Google Scholar 

  15. Arias-Madrid, D., Medina, O.E., Gallego, J., Acevedo, S., Correa-Espinal, A.A., Cortés, F.B., and Franco, C.A., Catalysts, 2020, vol. 10, p. 569. https://doi.org/10.3390/catal10050569

    Article  CAS  Google Scholar 

  16. Vargas, V., Castillo, J., Ocampo-Torres, R., Lienemann, C.P., and Bouyssiere, B., Pet. Sci. Technol., 2018, vol. 36, pp. 618–624. https://doi.org/10.1080/10916466.2018.1440300

    Article  CAS  Google Scholar 

  17. Mohammadi, M., Sedighi, M., and Hemati, M., Petroleum, 2020, vol. 6, pp. 182–188. https://doi.org/10.1016/j.petlm.2019.06.004

    Article  Google Scholar 

  18. Debost, M., Klar, P.B., Barrier, N., Clatworthy, E.B., Grand, J., Laine, F., Brázda, P., Palatinus, L., Nesterenko, N., Boullay, P., and Mintova, S., Angew. Chem. Int. Ed., 2020, vol. 59, pp. 23491–23495. https://doi.org/10.1002/anie.202009397

    Article  CAS  Google Scholar 

  19. Mahmoodi, N.M. and Saffar-Dastgerdi, M.H., Microchem. J., 2019, vol. 145, pp. 74–83. https://doi.org/10.1016/j.microc.2018.10.018

    Article  CAS  Google Scholar 

  20. Hailu, S.L., Nair, B.U., Redi-Abshiro, M., Diaz, I., and Tessema, M., J. Environ. Chem. Eng., 2017, vol. 5, pp. 3319–3329. https://doi.org/10.1016/j.jece.2017.06.039

    Article  CAS  Google Scholar 

  21. Sánchez-Hernández, R., Padilla, I., López-Andrés, S., and Lopez-Delgado, A., Int. J. Chem. Eng., 2018, pp. 1256197/1–1256197/11. https://doi.org/10.1155/2018/1256197

  22. Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C.L., Franscescon, F., Freitas, L., de Mello, J.M.M., Fiori, M.A., Oliveira, J.V., and Dal Magro, J., Process Saf. Environ. Prot., 2017, vol. 105, pp. 194–200. https://doi.org/10.1016/j.psep.2016.11.008

    Article  CAS  Google Scholar 

  23. Rożek, P., Król, M., and Mozgawa, W., J. Cleaner Prod., 2019, vol. 230, pp. 557–579. https://doi.org/10.1016/j.jclepro.2019.05.152

    Article  CAS  Google Scholar 

  24. Yuna, Z., Environ. Eng. Sci., 2016, vol. 33, pp. 443–454. https://doi.org/10.1089/ees.2015.0166

    Article  CAS  Google Scholar 

  25. Jiang, N., Shang, R., Heijman, S.G., and Rietveld, L.C., Water Res., 2018, vol. 144, pp. 145–161. https://doi.org/10.1016/j.watres.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  26. Sangeetha, C. and Baskar, P., Agric. Rev., 2016, vol. 37, pp. 101–108. https://doi.org/10.18805/ar.v0iof.9627

    Article  Google Scholar 

  27. Wen, J., Dong, H., and Zeng, G., J. Cleaner Prod., 2018, vol. 197, pt. 1, pp. 1435–1446. https://doi.org/10.1016/j.jclepro.2018.06.270

    Article  CAS  Google Scholar 

  28. Kianfar, E., Hajimirzaee, S., and Mehr, A.S., Microchem. J., 2020, vol. 156, p. 104822. https://doi.org/10.1016/j.microc.2020.104822

    Article  CAS  Google Scholar 

  29. Chen, C., Gopinath, S.C., and Anbu, P., Nanoscale Res. Lett., 2021, vol. 16, p. 68. https://doi.org/10.1186/s11671-021-03527-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Papaioannou, D., Katsoulos, P.D., Panousis, N., and Karatzias, H., Microporous Mesoporous Mater., 2005, vol. 84, pp. 161–170. https://doi.org/10.1016/j.micromeso.2005.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Irannajad, M. and Haghighi, H.K., Environ. Process, 2021, vol. 8, pp. 7–35. https://doi.org/10.1007/s40710-020-00476-x

    Article  CAS  Google Scholar 

  32. Alver, E. and Metin, A.Ü., Chem. Eng. J., 2012, vol. 200–202, pp. 59–67. https://doi.org/10.1016/j.cej.2012.06.038

    Article  CAS  Google Scholar 

  33. Calabrese, L., Brancato, V., Bonaccorsi, L., Frazzica, A., Caprì, A., Freni, A., and Proverbio, E., Appl. Therm. Eng., 2017, vol. 116, pp. 364–371. https://doi.org/10.1016/j.applthermaleng.2017.01.112

    Article  CAS  Google Scholar 

  34. Karimi, R., Bayati, B., Aghdam, N.C., Ejtemaee, M., and Babaluo, A.A., Powder Technol., 2012, vol. 229, pp. 229–236. https://doi.org/10.1016/j.powtec.2012.06.037

    Article  CAS  Google Scholar 

  35. Zendehdel, M., Ramezani, M., Shoshtari-Yeganeh, B., Cruciani, G., and Salmani, A., Environ. Technol., 2019, vol. 40, pp. 3689–3704. https://doi.org/10.1080/09593330.2018.1485750

    Article  CAS  PubMed  Google Scholar 

  36. Mesdaghinia, A., Azari, A., Nodehi, R.N., Yaghmaeian, K., Bharti, A.K., Agarwal, S., Gupta, V.K., and Sharafi, K., J. Mol. Liq., 2017, vol. 233, pp. 378–390. https://doi.org/10.1016/j.molliq.2017.02.094

    Article  CAS  Google Scholar 

  37. Nassar, N.N., Energy Fuels, 2010, vol. 24, pp. 4116–4122. https://doi.org/10.1021/ef100458g

    Article  CAS  Google Scholar 

  38. IP 143/84, Asphaltene Precipitation with Normal Heptane, Standard Methods for Analysis and Testing of Petroleum and Related Products, vol. 1, Institute of Petroleum, London, 1988. ISBN 10: 0471918520 /ISBN 13: 9780471918523.

  39. Franco, C., Patiño, E., Benjumea, P., Ruiz, M.A., and Cortés, F.B., Fuel, 2013, vol. 105, pp. 408–414. https://doi.org/10.1016/j.fuel.2012.06.022

    Article  CAS  Google Scholar 

  40. Marczewski, A.W. and Szymula, M., Colloids Surf. A, 2002, vol. 208, pp. 259–266. https://doi.org/10.1016/S0927-7757(02)00152-8

    Article  CAS  Google Scholar 

  41. Alboudwarej, H., Pole, D., Svrcek, W.Y., and Yarranton, H.W., Ind. Eng. Chem. Res., 2005, vol. 44, pp. 5585–5592. https://doi.org/10.1021/ie048948f

    Article  CAS  Google Scholar 

  42. Panahi, S., Sardarian, A.R., Esmaeilzadeh, F., and Mowla, D., Mater. Res. Express, 2018, vol. 5, pp. 095022/1-095022/11. https://doi.org/10.1088/2053-1591/aad7ae

    Article  CAS  Google Scholar 

  43. Sardarian, A.R., Kazemnejadi, M., and Esmaeilpour, M., Dalton. Trans., 2019, vol. 48, pp. 3132–3145. https://doi.org/10.1039/C9DT00060G

    Article  CAS  PubMed  Google Scholar 

  44. Cao, J., Wang, P., Shen, J., and Sun, Q., Materials, 2020, vol. 13, p. 5047. https://doi.org/10.3390/ma13215047

    Article  CAS  PubMed Central  Google Scholar 

  45. Rezayan, A. and Taghizadeh, M., Process Saf. Environ. Prot., 2018, vol. 117, pp. 711–721. https://doi.org/10.1016/j.psep.2018.06.020

    Article  CAS  Google Scholar 

  46. Kazemnejadi, M., Rezazadeh, Z., Nasseri, M.A., Allahresani, A., and Esmaeilpour, M., Green Chem., 2019, vol. 21, pp. 1718–1734. https://doi.org/10.1039/C8GC03919D

    Article  CAS  Google Scholar 

  47. Nasseri, M.A., Alavi, S.A., Kazemnejadi, M., and Allahresani, A., RSC Adv., 2019, vol. 9, pp. 20749–20759. https://doi.org/10.1039/C9RA03406D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao, M., Li, W., Dong, J., Zhang, Z., and Yang, B., World J. Condens. Matter Phys., 2011, vol. 1, pp. 49–54. https://doi.org/10.4236/wjcmp.2011.12008

    Article  CAS  Google Scholar 

  49. Akhter, H., Murshed, J., Rashed, M.A., Oshima, Y., Nagao, Y., Rahman, M.M., Asiri, A.M., Hasnat, M.A., Uddin, M.N., and Siddiquey, I.A., J. Alloys Compd., 2017, vol. 698, pp. 921–929. https://doi.org/10.1016/j.jallcom.2016.12.266

    Article  CAS  Google Scholar 

  50. Diao, Z., Shi, T., Wang, S., Huang, X., Zhang, T., Tang, Y., Zhang, X., and Qiu, R., Water Res., 2013, vol. 47, pp. 4391–4402. https://doi.org/10.1016/j.watres.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  51. DiLeo, G.J., Neff, M.E., and Savage, P.E., Energy Fuels, 2007, vol. 21, pp. 2340–2345. https://doi.org/10.1021/ef070056f

    Article  CAS  Google Scholar 

  52. Hosseinpour, N., Khodadadi, A.A., Bahramian, A., and Mortazavi, Y., Langmuir, 2013, vol. 29, pp. 14135–14146. https://doi.org/10.1021/la402979h

    Article  CAS  PubMed  Google Scholar 

  53. Mateus, L., Taborda, E.A., Moreno-Castilla, C., López-Ramón, M.V., Franco, C.A., and Cortés, F.B., Processes, 2021, vol. 9, p. 175. https://doi.org/10.3390/pr9010175

    Article  CAS  Google Scholar 

  54. Cortés, F.B., Montoya, T., Acevedo, S., Nassar, N.N., and Franco, C.A., CT&F – Ciencia, Tecnologia & Futuro, 2016, vol. 6, pp. 89–106. https://doi.org/10.29047/01225383.06

    Article  Google Scholar 

  55. Madhi, M., Bemani, A., Daryasafar, A., and Khosravi Nikou, M.R., Pet. Sci. Technol., 2017, vol. 35, pp. 242–248. https://doi.org/10.1080/10916466.2016.1255641

    Article  CAS  Google Scholar 

  56. Kashefi, S., Lotfollahi, M.N., and Shahrabadi, A., Oil Gas Sci. Technol., 2018, vol. 73, pp 2/1–2/12. https://doi.org/10.2516/ogst/2017038

  57. Nassar, N.N., Hassan, A., and Pereira-Almao, P., Energy Fuels, 2011, vol. 25, pp. 1017–1023. https://doi.org/10.1021/ef101230g

    Article  CAS  Google Scholar 

  58. Zarei, F., Marjani, A., and Soltani, R., Eur. Polym. J., 2019, vol. 119, pp. 400–409. https://doi.org/10.1016/j.eurpolymj.2019.07.043

    Article  CAS  Google Scholar 

  59. Soltani, R., Pishnamazi, M., Pelalak, R., Rezakazemi, M., Marjani, A., Dinari, M., Sarkar, S.M., and Shirazian, S., J. Environ. Chem. Eng., 2021, vol. 9, p. 104683. https://doi.org/10.1016/j.jece.2020.104683

Download references

ACKNOWLEDGMENTS

This work was supported by research council of Islamic Azad University, Neyshabur branch.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Motavalizadehkakhky or Rahele Zhiani.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaafi, F.B., Motavalizadehkakhky, A., Zhiani, R. et al. ZSM-5/Fe3O4 and ZSM-5/Fibrous Cellulose as Two Durable and Recyclable Adsorbents for Efficient Removal of Asphaltenes from Crude Oil. Pet. Chem. 62, 594–609 (2022). https://doi.org/10.1134/S0965544122040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122040119

Keywords:

Navigation