Skip to main content
Log in

Comprehensive Analysis of Asphaltene Stability Predictors under Different Conditions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This research study aims to examine the performance of seven Saturates, Aromatics, Resins, and Asphaltenes (SARA) based predictors that are commonly used to monitor the asphaltenes precipitation risk in crude oils. Predictors are employed on 45 crude oils whose stability is already known from three different experiences present present in published literature. Crude oils are divided into three conditions, containing 15 oil samples each, on the basis of their stability experiences. Detailed statistical analysis is carried out to analyze the performance of predictors. It is found that predictor performance changes when applied to oil samples of different conditions. Results indicate that Colloidal Instability Index (CII), Stankiewicz plot (SP), Chamkalani Stability Classifier (CSC), and Modified Jamal plot (M Jamal) are good predictors for unstable samples while Stability Index (SI), and Jamaluddin’s Plot (Jamal) predict stable samples better. Colloidal Stability Index (CSI) proves to be the best predictor in terms of average accuracy of three conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Figures S1–S15 are available in Supplementary Information.

REFERENCES

  1. Karambeigi, M.A., Kharrat, R., and Mahdavi, S., Energy Sources, Part A, 2015, vol. 37, pp. 1715–1722. https://doi.org/10.1080/15567036.2011.585380

    Article  CAS  Google Scholar 

  2. Creek, J.L., Energy Fuels, 2005, vol. 19, pp. 1212–1224. https://doi.org/10.1021/ef049778m

    Article  CAS  Google Scholar 

  3. Boek, E.S., Wilson, A.D., Padding, J.T., Headen, T.F., and Crawshaw, J.P., Energy Fuels, 2010, vol. 24, pp. 2361–2368. https://doi.org/10.1021/ef9010059

    Article  CAS  Google Scholar 

  4. Seifried, C.M., Asphaltene Precipitation and Deposition From Crude Oil With CO2 and Hydrocarbons: Experimental Investigation and Numerical Simulation, Imperial College London, Department of Chemical Engineering, Sept. 2016.

  5. Shadman, M.M., Dehaghani, A.H.S., and Badizad, M.H., Petroleum, 2017, vol. 3, pp. 287–291. https://doi.org/10.1016/j.petlm.2016.08.011

    Article  Google Scholar 

  6. Davudov, D., Moghanloo, R.G., and Flom, J., SPE J., 2018, vol. 23, pp. 274–285. https://doi.org/10.2118/187950-pa

    Article  CAS  Google Scholar 

  7. Flom, J., Moghanloo, R.G., and Davudov, D., J. Petrol. Sci. Eng., 2017, vol. 157, pp. 451–460. https://doi.org/10.1016/j.petrol.2017.07.048

    Article  CAS  Google Scholar 

  8. Melendez-Alvarez, A.A., Garcia-Bermudes, M., Tavakkoli, M., Doherty, R.H., Meng, S., Abdallah, D.S., and Vargas, F.M., Fuel, 2016, vol. 179, pp. 210–220. https://doi.org/10.1016/j.fuel.2016.03.056

    Article  CAS  Google Scholar 

  9. Fan, T. and Buckley, J.S., Energy Fuels, 2002, vol. 16, pp. 1571–1575. https://doi.org/10.1021/ef0201228

    Article  CAS  Google Scholar 

  10. Ashoori, S., Sharifi, M., Masoumi, M., and Salehi, M.M., Egypt. J. Petrol., 2017, vol. 26, pp. 209–213. https://doi.org/10.1016/j.ejpe.2016.04.002

    Article  Google Scholar 

  11. Struchkov, I.A., Rogachev, M.K., Kalinin, E.S., and Roschin, P.V., J. Petrol. Explor. Prod. Technol., 2019, vol. 9, pp. 1443–1455. https://doi.org/10.1007/s13202-018-0539-z

    Article  CAS  Google Scholar 

  12. Holmes, J.W. and Bullin, J.A., Hydrocarbon Proc., 1983, vol. 62, no. 9, pp. 101–103.

    CAS  Google Scholar 

  13. Gharbi, K., Benyounes, K., and Khodja, M., J. Pet. Sci. Eng., 2017, vol. 158, pp. 351–360. https://doi.org/10.1016/j.petrol.2017.08.062

    Article  CAS  Google Scholar 

  14. Buenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A., and Wu, J., AIChE J., 2004, vol. 50, pp. 2552–2570. https://doi.org/10.1002/aic.10243

    Article  CAS  Google Scholar 

  15. Guzman, R., Ancheyta, J., Trejo, F., and Rodriguez, S., Fuel, 2017, vol. 188, pp. 530–543. https://doi.org/10.1016/j.fuel.2016.10.012

    Article  CAS  Google Scholar 

  16. Carrier, H., Plantier, F., Daridon, J.L., Lagourette, B., and Lu, Z., J. Pet. Sci. Eng., 2000, vol. 27, pp. 111–117. https://doi.org/10.1016/S0920-4105(00)00052-8

    Article  CAS  Google Scholar 

  17. Wang, J., Creek, J.L., and Buckley, J.S., SPE Annual Technical Conference and Exhibition, 24–27 September, San Antonio, Texas, USA, 2006. https://doi.org/10.2118/103137-MS

  18. Jamaluddin, A.K.M., Creek, J., Kabir, C.S., McFadden, J.D., D’Cruz, D., Manakalathil, J., Joshi, N., and Ross, B., SPE Asia Pacific Improved Oil Recovery Conference, 2001. https://doi.org/10.2118/72154-MS

  19. Likhatsky, V.V. and Syunyaev, R.Z., Energy Fuels, 2010, vol. 24, pp. 6483–6488. https://doi.org/10.1021/ef101033p

    Article  CAS  Google Scholar 

  20. Moura, L.G.M., Santo, M.F.P., Zilio, E.L., Rolemberg, M.P., and Ramos, A.C.S., J. Pet. Sci. Eng., 2010, vol. 74, pp. 77–87. https://doi.org/10.1016/j.petrol.2010.08.011

    Article  CAS  Google Scholar 

  21. Prakoso, A., Punase, A., Rogel, E., Ovalles, C., and Hascakir, B., Energy Fuels, 2018, vol. 32, pp. 6482–6487. https://doi.org/

    Article  CAS  Google Scholar 

  22. Carbognani, L., and Espidel, J., Vision Technol., 1995, vol. 3, pp. 35–42.

    Google Scholar 

  23. Punase, A., Prakoso, A., and Hascakir, B., SPE Western Regional Meeting, Anchorage, Alaska, USA, 2016. https://doi.org/10.2118/180423-MS

  24. Leontaritis, K.J. and Mansoori G.A., SPE Int. Symp. on Oilfield Chemistry, San Antonio, Texas, 1987, Paper no. SPE-16258-MS. https://doi.org/10.2118/16258-MS

  25. Ocanto, O., Marcano, F., Castillo, J., Fernảndez, A., Caetano, M., Chirinos, J., and Ranaudo, M.A., Energy Fuels, 2009, vol. 23, pp. 3039–3044. https://doi.org/10.1021/ef900106f

    Article  CAS  Google Scholar 

  26. Higuerey, I., Orea, M. and Pereira, P., ACS Div. Fuel Chem., 2002, vol. 47, pp. 656–658.

    CAS  Google Scholar 

  27. Pereira, V.J., Setaro, L.L.O., Costa, G.M.N., and Vieira de Melo, S.A.B., Energy Fuels, 2017, vol. 31, pp. 3380–3391. https://doi.org/10.1021/acs.energyfuels.6b02348

    Article  CAS  Google Scholar 

  28. Sulaimon, A.A., Mendoza De Castro, J.K., and Vatsa, S., J. Pet. Sci. Eng., 2020, vol. 190, p. 106782. https://doi.org/10.1016/j.petrol.2019.106782

    Article  CAS  Google Scholar 

  29. Asomaning, S., Petrol. Sci. Technol., 2003, vol. 21, pp. 581–590. https://doi.org/10.1081/LFT-120018540

    Article  CAS  Google Scholar 

  30. Kumar, R., Voolapalli, R.K., and Upadhyayula, S., Fuel Process. Technol., 2018, vol. 177, pp. 309–327. https://doi.org/10.1016/j.fuproc.2018.05.008

    Article  CAS  Google Scholar 

  31. Shokrlu, Y.H., Kharrat, R., Ghazanfari, M.H., and Saraji, S., Petrol. Sci. Technol., 2011, vol. 29, pp. 1407–1418. https://doi.org/10.1080/10916460903567582

    Article  CAS  Google Scholar 

  32. Asomaning, S. and Watkinson, A.P., Heat Transfer Eng., 2000, vol. 21, pp. 10–16. https://doi.org/10.1080/014576300270852

    Article  CAS  Google Scholar 

  33. Stankiewicz, A.B., Flannery, M.D., Fuex, N.Q., Broze, G., Couch, J.L., Dubey, S.T., Iyer, S.D., Ratulowski, J., and Westrich, J., Proc. of Third International Symposium on Mechanisms and Mitigation of Fouling in Petroleum and Natural Gas Production, March 10–14, 2002.

  34. Chamkalani, A., Petrol. Sci. Technol., 2015, vol. 33, pp. 31–38. https://doi.org/10.1080/10916466.2011.651237

    Article  CAS  Google Scholar 

  35. Zendehboudi, S., Shafiei, A., Bahadori, A., James, L.A., Elkamel, A., and Lohi, A., Chem. Eng. Res. Des., 2014, vol. 92, pp. 857–875. https://doi.org/10.1016/j.cherd.2013.08.001

    Article  CAS  Google Scholar 

  36. Tharwat, A., Appl. Comput. Inform., 2020. https://doi.org/10.1016/j.aci.2018.08.003

  37. Akosa, J.S., Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data,(Oklahoma State University, 2017, Paper 942.

  38. Rogel, E., León, O., Contreras, E., Carbognani, L., Torres, G., Espidel, J., and Zambrano, A., Energy Fuels, 2003, vol. 17, pp. 1583–1590. https://doi.org/10.1021/ef0301046

    Article  CAS  Google Scholar 

  39. Marcano, F., Flores, R., Chirinos, J., and Ranaudo, M.A., Energy Fuels, 2011, vol. 25, pp. 2137–2141. https://doi.org/10.1021/ef200189m

    Article  CAS  Google Scholar 

  40. Solaimany Nazar, A.R. and Bayandory, L., Iran. J. Chem. Eng., 2008, vol. 5, pp. 3–12.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Ms. Zehra Moussa for additional support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Ali.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 337–346 https://doi.org/10.31857/S0028242121030059.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.I., Lalji, S.M., Haneef, J. et al. Comprehensive Analysis of Asphaltene Stability Predictors under Different Conditions. Pet. Chem. 61, 446–454 (2021). https://doi.org/10.1134/S0965544121050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050091

Keywords:

Navigation