Skip to main content
Log in

Mathematical Modeling and Calculation of the Methanol Production Process via Carbon Dioxide Hydrogenation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This work is devoted to the mathematical modeling and calculation of the hydrogenation reaction of carbon dioxide to produce methanol using kinetic models developed with taking into account different understandings of the reaction mechanism; in particular, the Graaf and Rozovskii–Lin mechanisms are considered. It has been shown that under flow conditions, both models designed for describing the reaction of methanol production from synthesis gas fairly accurately describe the CO2 hydrogenation reaction. Under recycle flow conditions, a more accurate description of the product yield with changes in pressure and temperature can be obtained using a model based on the Graaff mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. S. Kosoi, Yu. A. Zeigarnik, O. S. Popel’, et al., Teploenergetika, No. 9, 23 (2018).

    Google Scholar 

  2. A. Álvarez, A. Bansode, A. Urakawa, et al., Chem. Rev. 117, 9804 (2017).

    Article  Google Scholar 

  3. M. Bowker, Chem. Cat. Chem. 11, 4238 (2019).

    CAS  PubMed  Google Scholar 

  4. I. U. Din, M. S. Shaharun, M. A. Alotaibi, et al., J. CO2 Util. 34, 20 (2019).

  5. Sh. Dang, H. Yang, P. Gao, et al., Catal. Today 330, 61 (2019).

    Article  CAS  Google Scholar 

  6. R. Guil-López, N. Mota, J. Llorente, et al., Materials 12, 3902 (2019).

    Article  Google Scholar 

  7. S. K. Wilkinson, L. G. A. van de Water, B. Miller, et al., J. Catal. 337, 208 (2016).

    Article  CAS  Google Scholar 

  8. J.-F. Portha, K. Parkhomenko, K. Kobl, et al., Ind. Eng. Chem. Res. 56, 13 133 (2017).

    Article  Google Scholar 

  9. A. A. Kiss, J. J. Pragt, H. J. Vos, et al., Chem. Eng. J. 284, 260 (2016).

    Article  CAS  Google Scholar 

  10. G. Bozzano and F. Manenti, Prog. Energy Combust. Sci. 56, 71 (2016).

    Article  Google Scholar 

  11. T. Kubota, I. Hayakawa, H. Mabuse, et al., Appl. Organomet. Chem. 15, 121 (2001).

    Article  CAS  Google Scholar 

  12. G. H. Graaf, E. J. Stamhuis, and A. A. C. M. Keenackers, Chem. Eng. Sci. 43, 3185 (1988).

    Article  CAS  Google Scholar 

  13. A. Y. Rozovskii and G. I. Lin, Top. Catal. 22, 137 (2003).

    Article  CAS  Google Scholar 

  14. https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html. Accessed July 10, 2020.

  15. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html. Accessed July 10, 2020.

  16. G. I. Lin, P. V. Samokhin, and M. A. Kipnis, Catal. Ind. 12, 101 (2020).

    Article  Google Scholar 

  17. H. Renon and J. M. Prausnitz, AIChE J. 14, 135 (1968).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 17-73-30046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Afokin.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedova, M.V., Starozhitskaya, A.V., Afokin, M.I. et al. Mathematical Modeling and Calculation of the Methanol Production Process via Carbon Dioxide Hydrogenation. Pet. Chem. 60, 1244–1250 (2020). https://doi.org/10.1134/S0965544120110146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120110146

Keywords:

Navigation