Skip to main content
Log in

Behavior of Vanadium and Nickel in Hydroconversion of Vacuum Tower Bottoms over Nanosized Slurry Catalysts

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The distribution of vanadium and nickel upon hydroconversion of vacuum tower bottoms in the presence of slurried MoS2, Ni7S6, (NH4)0.25 ⋅ WO3, and Fe1 − xS nanoparticles has been studied. The experiments have been performed in an autoclave reactor and in a flow-through hydroconversion unit. It has been shown that the coke yield in hydrocracking reactions increases in the order MoS2, Ni7S6, (NH4)0.25 ⋅ WO3, Fe1 − xS. The proportion of metals in the toluene-insoluble hydroconversion residue increases in the same order. As the hydroconversion temperature increases, the transfer of vanadium and nickel to condensation products increases. According to electron microscopy data for the toluene insolubles, it can be assumed that vanadium and nickel are bonded to carbon, enter into the coke composition, and do not form compounds with the active phase of the MoS2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. O. Kapustin and D. A. Grushevenko, Rev. IFP Energ. Nouv. 73 (67), 1 (2018). https://doi.org/10.2516/ogst/2018063

  2. S. A. Shaban, H. S. Ahmed, M. F. Menoufy, and Y. Fathy, Egypt. J. Pet. 22, 367 (2013). https://doi.org/10.1016/j.ejpe.2013.10.006

  3. J. Ancheyta, Deactivation of Heavy Oil Hydroprocessing Catalysts: Fundamentals and Modeling (John Wiley, Hoboken, NJ, 2016).

    Book  Google Scholar 

  4. S. K. Maity, V. H. Pérez, J. Ancheyta, and M. S. Rana, Energy Fuels 21, 636 (2007). https://doi.org/10.1021/ef060495z

  5. S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54, 323 (2014). https://doi.org/10.1134/S0965544114050065

  6. G. Bellussi, G. Rispoli, A. Landoni, et al., J. Catal. 308, 189 (2013). https://doi.org/10.1016/j.jcat.2013.07.002

  7. T. N. Manh and T. N. Ngoc, J. Ind. Eng. Chem. 43, 1 (2016). https://doi.org/10.1021/ef700253f

  8. M. J. Angeles, C. Leyva, J. Ancheyta, and S. Ramírez, Catal. Today 5, 274 (2014). https://doi.org/10.1016/j.cattod.2013.08.016

  9. S. N. Khadzhiev, Pet. Chem. 56, 465 (2016). https://doi.org/10.1134/S0965544116060050

    Article  CAS  Google Scholar 

  10. G. Bellussi, G. Rispoli, D. Molinari, et al, Catal. Sci. Technol., No. 3, 176 (2013). https://doi.org/10.1039/c2cy20448g

  11. Kh. M. Kadiev, S. N. Khadzhiev, M. Kh. Kadieva, and E. S. Dogova, Pet. Chem. 57, 608 (2017). https://doi.org/10.1134/S0965544117070039

    Article  CAS  Google Scholar 

  12. S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21, 3057 (2007). https://doi.org/10.1021/ef700253f

  13. G. P. Dechaine and M. R. Gray, Energy Fuels 24, 2795 (2010). https://doi.org/10.1021/ef100173j

  14. J. Chirinos, D. Oropeza, J. González, et al., Energy Fuels 27, 2431 (2013). https://doi.org/10.1021/ef3020052

    Article  CAS  Google Scholar 

  15. I. T. Caga, I. D. Carnell, and J. M. Winterbottom, J. Chem. Technol. Biotechnol. 76, 179 (2001). https://doi.org/10.1016/S0926-860X(00)00587-1

  16. R. A. Ware and J. Wei, J. Catal. 93, 100 (1985). https://doi.org/10.1016/0021-9517(85)90155-1

  17. R. A. Ware and J. Wei, J. Catal. 93, 135. https://doi.org/10.1016/0021-9517(85)90157-5

  18. C. H. Philip, M. Carlos, and E. Scott, Polyhedron 5, 237 (1986). https://doi.org/10.1016/S0277-5387(00)84916-5

  19. H. Liu, S. Fan, Z. Wang, et al., Chem. Select. 2, 16 139 (2017). https://doi.org/10.1002/slct.201601936

  20. A. L. Maksimov, L. A. Zekel’, M. Kh. Kadieva, et al., Pet. Chem. 59, 968 (2019).

    Article  CAS  Google Scholar 

  21. Kh. M. Kadiev, N. V. Oknina, A. L. Maksimov, et al., Res. J. Pharm. Biol. Chem. Sci. 7, 704 (2016).

    CAS  Google Scholar 

  22. S. N. Khadzhiev, Kh. M. Kadiev, L. A. Zekel’, and M. Kh. Kadieva, Pet. Chem. 58, 535. https://doi.org/10.1134/S0965544118070046

Download references

Funding

This work was carried out as part of the state assignment of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Zekel’.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadiev, K.M., Zekel’, L.A., Kadieva, M.K. et al. Behavior of Vanadium and Nickel in Hydroconversion of Vacuum Tower Bottoms over Nanosized Slurry Catalysts. Pet. Chem. 60, 1009–1018 (2020). https://doi.org/10.1134/S0965544120090133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120090133

Keywords:

Navigation