Skip to main content
Log in

Catalytic Alkylation of Adamantane with Propylene: Quantum-Chemical Calculations and Experimental Data

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of interaction of adamantane with propylene has been studied by quantum-chemical calculations within the density functional theory (DFT). It has been shown that the main products of adamantane alkylation with propylene in the presence of acid catalysts are hydrocarbons with unbranched (normal-chain) substituents, 1-n-propyl- and 1-n-propenyladamantanes. The main stages of adamantane alkylation and the geometric and electronic structures of the intermediates have been determined. The thermodynamic characteristics of the studied adamantanes have been found, and the mechanisms of individual steps of their transformations have been proposed. The obtained data make it possible to control the process of preparation of substituted adamantanes with a defined structure that are of interest for the development of efficient energy-rich materials, high-density fuels, and thermally stable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Landa and V. Machacek, Coll. Czech. Chem. Commun. 5, 1 (1933). https://doi.org/10.1135/cccc19330001

    Article  CAS  Google Scholar 

  2. E. I. Bagrii, Adamantanes: Preparation, Properties, and Use (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  3. M. A. Gunawan, J. C. Hierso, D. Poinsot, et al., New J. Chem. 38, 28 (2014).https://doi.org/10.1039/C3NJ00535F

    Article  CAS  Google Scholar 

  4. A. I. Nekhaev, E. I. Bagrii, and A. L. Maksimov, Pet. Chem. 51, 86 (2011). https://doi.org/10.1134/S0965544111020095

    Article  CAS  Google Scholar 

  5. I. A. Novakov, B. S. Orlinson, Z. M. Sabirov, et al., Vysokomol. Soedin., Ser. B 35, 2053 (1993).

    CAS  Google Scholar 

  6. A. S. Barnard and M. Sternberg, J. Mater. Chem. 17, 4811 (2007). https://doi.org/10.1039/b710189a

    Article  CAS  Google Scholar 

  7. H. Wu, H. Xu, F. Tao, et al., New J. Chem. 42, 12 802 (2018). https://doi.org/10.1039/c8nj01881b

    Article  CAS  Google Scholar 

  8. A. Kovalenko, C. Yumusak, P. Heinrichova, et al., J. Mater. Chem. C 5, 4716 (2017). https://doi.org/10.1039/C6TC05076J

    Article  CAS  Google Scholar 

  9. K. Katsumasa and O. Susumu, Jpn. J. Appl. Phys. 51, 015 001 (2012). https://doi.org/10.1143/JJAP.51.015001

    Article  CAS  Google Scholar 

  10. A. Datta, M. Kirca, Y. Fu, and A. C. To, Nanotechnology 22, 065 706 (2011). https://doi.org/10.1088/0957-4484/22/6/065706

    Article  CAS  Google Scholar 

  11. Yu. A. Borisov and E. I. Bagrii, Dokl. Phys. Chem. 463, 141 (2015). https://doi.org/10.1134/S0012501615070015

    Article  CAS  Google Scholar 

  12. E. I. Bagrii, Yu. A. Borisov, Yu. A. Kolbanovskii, and A. L. Maksimov, Pet. Chem. 59, 66 (2019). https://doi.org/10.1134/S0965544119010067

    Article  CAS  Google Scholar 

  13. E. A. Zauer and O. A. Zauer, Russ. J. Phys. Chem. A 83, 582 (2009). https://doi.org/10.1134/S0036024409040128

    Article  CAS  Google Scholar 

  14. R. Abbasoğlu and S. S. Yılmaz, J. Mol. Struct. (THEOCHEM) 589, 431 (2002). https://doi.org/10.1016/S0166-1280(02)00278-6

    Article  Google Scholar 

  15. J. O. Jensen, Spectrochim. Acta, Part A 60, 1895 (2004). https://doi.org/10.1016/j.saa.2003.09.024

    Article  CAS  Google Scholar 

  16. S. A. Kovács and A. Szabó, J. Mol. Struct. 519, 13 (2000). https://doi.org/10.1016/S0022-2860(99)00278-1

    Article  Google Scholar 

  17. W. D. S. A. Miranda, S. S. Coutinho, M. S. Tavares, et al., J. Mol. Struct. 1122, 299 (2016). doi . 2016.05.103https://doi.org/10.1016/j.molstruc

  18. S. Sauer, I. Paidarová, P. Čársky, and R. Čurík, Eur. Phys. J. D 70, 105 (2016). https://doi.org/10.1140/epjd/e2016-70084-x

    Article  CAS  Google Scholar 

  19. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  20. Chemcraft. www.chemcraftprog.com. Accessed April 25, 2019.

Download references

Funding

This publication was supported by the “5-100” Program of the Peoples’ Friendship University of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Baranov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR INFORMATION

N.I. Baranov, ORCID: https://orcid.org/0000-0002-8813-7786

R.E. Safir, ORCID: https://orcid.org/0000-0002-1981-0594

E.I. Bagrii, ORCID: https://orcid.org/0000-0002-9652-9296

K.V. Bozhenko, ORCID: https://orcid.org/0000-0002-5786-5297

A.G. Cherednichenko, ORCID: https://orcid.org/0000-0002-4709-5313

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, N.I., Safir, R.E., Bagrii, E.I. et al. Catalytic Alkylation of Adamantane with Propylene: Quantum-Chemical Calculations and Experimental Data. Pet. Chem. 60, 1033–1042 (2020). https://doi.org/10.1134/S0965544120090042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120090042

Keywords:

Navigation