Skip to main content
Log in

Comparison of Morphology and Physicochemical Properties of Embryonic and Nanosized ZSM-5 Zeolites and Their Use in the Dealkylation Reaction of Aromatic Hydrocarbons (a Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review presents the analysis of the characteristic features of the structure, synthesis methods, and physicochemical properties of embryos that form the basis of ZSM-5 zeolites. Various physicochemical characteristics of the embryos and nanocrystals of ZSM-5 (X-ray diffraction, textural characteristics, morphology, infrared and nuclear magnetic resonance spectroscopy) are discussed and compared, and their similarities and differences are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. M. Flanigen, R. W. Broach, and S. T. Wilson, Zeolites in Industrial Separation and Catalysis, Ed. by S. Kulprathipanja (Wiley–VCH, Weinheim, 2010), p. 1.

    Google Scholar 

  2. G. Bellussi, A. Carati, and R. Millini, Zeolites and Catalysis: Synthesis, Reactions and Applications, Ed. by J. Cejka, A. Corma, and S. Zones (Wiley–VCH, Weinheim, 2010), vol. 2, p. 449.

    Google Scholar 

  3. C. Marcilly, Top. Catal. 13, 357 (2000).

    Article  CAS  Google Scholar 

  4. W. Vermeiren and J.-P. Gilson, Top. Catal. 52, 1131 (2009).

    Article  CAS  Google Scholar 

  5. C. Martinez and A. Corma, Coord. Chem. Rev. 255, 1558 (2011).

    Article  CAS  Google Scholar 

  6. J. Perez-Ramirez, C. H. Christensen, K. Egeblad, et al., Chem. Soc. Rev. 37, 2530 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. V. Valtchev, G. Majano, S. Mintova, and J. Perez-Ramirez, Chem. Soc. Rev. 42, 263 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Y. Wei, T. E. Parmentier, K. P. de Jong, and J. Zecevic, Chem. Soc. Rev. 44, 7234 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. R. Qi, T. Fu, W. Wan, and Z. Li, Fuel Process. Technol. 155, 191 (2017).

    Article  CAS  Google Scholar 

  10. K.-G. Haw, J.-M. Goupil, J.-P. Gilson, et al., New J. Chem. 40, 4307 (2016).

    Article  CAS  Google Scholar 

  11. J.-P. Gilson, V. Valtchev, K.-G. Haw, et al., in Proceedings of the 8th International Symposium on Acid–Base Catalysis, May 7–10, 2017, Rio de Janeiro, Brazil.

  12. L. L. Silva, D. Cardoso, C. Sievers, and L. Martins, in Proceedings of the 20 th CBCat (Brazilian Congress of Catalysis), September 1–5, 2019, São Paulo, Brazil.

  13. K.-G. Haw, J.-P. Gilson, N. Nesterenko, et al., ACS Catal. 8, 8199 (2018).

    Article  CAS  Google Scholar 

  14. Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger’s Vision Today, Ed. by M. Bertau, H. Offermanns, L. Plass, (Springer, Berlin, 2014).

    Google Scholar 

  15. Y. Yan, X. Guo, Y. Zhang, and Y. Tang, Catal. Sci. Technol. 5, 772 (2015).

    Article  CAS  Google Scholar 

  16. S. Mintova, J.-P. Gilson, and V. Valtchev, Nanoscale 5, 6693 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Verduijn, A. J. Bons, M. H. C. Anthonis, et al., US Patent No. 6090289 (2000).

  18. C. Martínez Sánchez and J. Pérez Pariente, Zeolites and Ordered Porous Solids: Fundamentals and Applications (Universitat Politècnica de València, Valencia, 2011).

    Google Scholar 

  19. Q. Yu, Q. Zhang, J. Liu, C. Li, Q. Cui, Cryst. Eng. Commun. 15, 7680 (2013).

    Article  CAS  Google Scholar 

  20. C. S. Cundy and P. A. Cox, Chem. Rev. 103, 663 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. C. S. Cundy and P. A. Cox, Microporous Mesoporous Mater. 82, 1 (2005).

    Article  CAS  Google Scholar 

  22. H. Chen, Y. Wang, F. Meng, et al., RSC Adv. 6, 76642 (2016).

    Article  CAS  Google Scholar 

  23. H. Chen, Y. Wang, F. Meng, et al., Microporous Mesoporous Mater. 244, 301 (2017).

    Article  CAS  Google Scholar 

  24. H. Li, F. Wang, F. Meng, et al., RSC Adv. 7, 25605 (2017).

    Article  CAS  Google Scholar 

  25. H. Li, Y. Wang, C. Fan, et al., Appl. Catal., A 551, 34 (2018).

  26. S. F. Zhao, X. T. Yao, B. H. Yan, et al., Chin. Chem. Lett. 28, 1318 (2017).

    Article  CAS  Google Scholar 

  27. C. Dai, J. Li, A. Zhang, et al., RSC Adv. 7, 37915 (2017).

    Article  CAS  Google Scholar 

  28. E. Unneberg and S. Kolboe, Appl. Catal., A 124, 345 (1995).

  29. K. Shen, N. Wang, X. Chen, et al., Catal. Sci. Technol. 7, 5143 (2017).

    Article  CAS  Google Scholar 

  30. F. Meng, Y. Wang, S. Wang, et al., C.R. Chim. 20, 385 (2017).

    Article  CAS  Google Scholar 

  31. T. Fu, J. Chang, J. Shao, and Z. Li, J. Energ. Chem. 26, 139 (2017).

    Article  Google Scholar 

  32. H. Chen, Y. Wang, C. Sun, et al., Catal. Commun. 100, 107 (2017).

    Article  CAS  Google Scholar 

  33. Z. Hu, H. Zhang, L. Wang, et al., Catal. Sci. Technol. 4, 2891 (2014).

    Article  CAS  Google Scholar 

  34. Z. Qin, L. Lakiss, L. Tosheva, et al., Adv. Funct. Mater. 24, 257 (2014).

    Article  CAS  Google Scholar 

  35. L. Sun, Y. Wang, H. Chen, et al., Catal. Today 316, 91 (2018).

    Article  CAS  Google Scholar 

  36. R. Chu, T. Xu, X. Meng, et al., Catal. Lett. 146, 1965 (2016).

    Article  CAS  Google Scholar 

  37. Y. Gao, G. Wu, F. Ma, et al., Microporous Mesoporous Mater. 226, 251 (2016).

    Article  CAS  Google Scholar 

  38. Y. Gao, B. Zheng, G. Wu, F. Ma, C. Liu, RSC Adv 6, 83581 (2016).

    Article  CAS  Google Scholar 

  39. X. Jiang, X. Su, X. Bai, et al., Microporous Mesoporous Mater. 263, 243 (2017).

    Article  CAS  Google Scholar 

  40. Q. Zhang, S. Hu, L. Zhang, et al., Green. Chem. 16, 77 (2014).

    Article  CAS  Google Scholar 

  41. L. Meng, B. Mezari, M. G. Goesten, et al., Catal. Sci. Technol. 7, 4520 (2017).

    Article  CAS  Google Scholar 

  42. Q. Yu, X. Meng, J. Liu, et al., Microporous Mesoporous Mater. 181, 192 (2013).

    Article  CAS  Google Scholar 

  43. X. Meng and F.-S. Xiao, Chem. Rev. 114, 1521 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. A. Persson, B. Schoeman, J. Sterte, and J.-E. Otterstedt, Zeolites 14, 557 (1994).

    Article  CAS  Google Scholar 

  45. N. Ren, Z.-J. Yang, X.-C. Lv, et al., Microporous Mesoporous Mater. 131, 103 (2010).

    Article  CAS  Google Scholar 

  46. T. Xue, Y. M. Wang, and M. -Y. He, Solid State Sci. 14, 409 (2012).

    Article  CAS  Google Scholar 

  47. S. M. Alipour, R. Halladj, and S. Askari, Rev. Chem. Eng. 30, 289 (2014).

    Article  CAS  Google Scholar 

  48. B. Tokay and A. Erdem-Senatalar, Microporous Mesoporous Mater. 148, 43 (2012).

    Article  CAS  Google Scholar 

  49. B. Tokay, M. Somer, A. Erdem-Senatalar, et al., Microporous Mesoporous Mater. 118, 143 (2009).

    Article  CAS  Google Scholar 

  50. Y. Hu, C. Liu, Y. Zhang, et al., Microporous Mesoporous Mater. 119, 306 (2009).

    Article  CAS  Google Scholar 

  51. P. P. E. de Moor, T. P. Beelen, B. U. Komanschek, and R. A. van Santen, Microporous Mesoporous Mater. 21, 263 (1998).

    Article  CAS  Google Scholar 

  52. CN Patent No. 104098110A (2014).

  53. W. Song, R. Justice, C. Jones, et al., Langmuir 20, 4696 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. G. Majano, A. Darwiche, S. Mintova, and V. Valtchev, Ind. Eng. Chem. Res. 48, 1767 (2009).

    Article  CAS  Google Scholar 

  55. A. Persson, B. Schoeman, J. Sterte, and J.-E. Otterstedt, Zeolites 15, 611 (1995).

    Article  CAS  Google Scholar 

  56. Y. Shen, T. T. Le, R. Li, and J. D. Rimer, Chem. Phys. Chem. 19, 529 (2017).

    Article  PubMed  CAS  Google Scholar 

  57. T. L. Maesen, M. Schenk, T. Vlugt, and B. Smit, J. Catal. 203, 281 (2001).

    Article  CAS  Google Scholar 

  58. H. Zhang, Y. Zhao, H. Zhang, et al., Chem.-Eur. J. 22, 7141 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. K. Iyoki, K. Itabashi, and T. Okubo, Microporous Mesoporous Mater. 189, 22 (2014).

    Article  CAS  Google Scholar 

  60. A. Javdavi, J. Ahmadpour, and F. Yaripour, Microporous Mesoporous Mater. 284, 443 (2019).

    Article  CAS  Google Scholar 

  61. W. Widayat and A. N. Annisa, AIP Conf. Proceed. 1904, 020061 (2017).

    Article  CAS  Google Scholar 

  62. J. Jin, L. Cao, Q. Hu, et al., J. Mater. Chem. 2, 7853 (2014).

    Article  CAS  Google Scholar 

  63. E. Mahmoud and R. F. Lobo, Microporous Mesoporous Mater. 189, 97 (2014).

    Article  CAS  Google Scholar 

  64. M. Firoozi, M. Baghalha, and M. Asadi, Catal. Commun. 10, 1582 (2009).

    Article  CAS  Google Scholar 

  65. Z. Ma, T. Fu, Y. Wang, et al., Ind. Eng. Chem. Res. 58, 2146 (2019).

    Article  CAS  Google Scholar 

  66. T. Fu, Z. Ma, Y. Wang, et al., Fuel Process. Technol. 194, 106122 (2019).

    Article  CAS  Google Scholar 

  67. H. Mochizuki, T. Yokoi, H. Imai, et al., Microporous Mesoporous Mater. 145, 165 (2011).

    Article  CAS  Google Scholar 

  68. C. Liu, Y. Chen, Y. Zhao, et al., Fuel 263, 1 (2020).

    Google Scholar 

  69. T. Xue, Y. M. Wang, and M.-Y. He, Microporous Mesoporous Mater. 156, 29 (2012).

    Article  CAS  Google Scholar 

  70. Collection of Simulated XRD Powder Patterns for Zeolites, 4th Ed., Ed. by M. M. J. Treacy and J. B. Higgins (Elsevier, Amsterdam, 2001).

    Google Scholar 

  71. B. Adnadjevic, J. Vukicevic, Z. Filipovic-Rojka, and V. Marcovic, Zeolites 10, 699 (1990).

    Article  CAS  Google Scholar 

  72. J. Shao, T. Fu, Q. Ma, et al., Microporous Mesoporous Mater. 273, 122 (2019).

    Article  CAS  Google Scholar 

  73. J. Zhou, Z. Hua, Z. Liu, et al., ACS Catal. 1, 287 (2011).

    Article  CAS  Google Scholar 

  74. A. A. Rownaghi, F. Rezaei, and J. Hedlund, Chem. Eng. J. 191, 528 (2012).

    Article  CAS  Google Scholar 

  75. S. Inagaki, K. Sato, S. Hayashi, et al., ACS Appl. Mater. Interfaces 7, 4488 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. M. T. Portilla, F. J. Llopis, C. Martinez, et al., Appl. Catal., A 393, 257 (2011).

  77. T. H. Chen, B. H. Wouters, and P. J. Grobet, Eur. J. Inorg. Chem. 2000, 281 (2000).

    Article  Google Scholar 

  78. A. Primo and H. Garcia, Chem. Soc. Rev. 43, 7548 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. L. Rodríguez-González, F. Hermes, M. Bertmer, et al., Appl. Catal., A 328, 174 (2007).

  80. V. N. Romannikov, V. M. Mastikhin, S. Hocevar, and B. Drzaj, Zeolites 3, 311 (1983).

    Article  CAS  Google Scholar 

  81. S. A. Ali, K. E. Ogunrondi, and S. S. AL-Khattaf, Chem. Eng. Res. Des. 91, 2601 (2013).

    Article  CAS  Google Scholar 

  82. J. M. Serra, E. Guillon, and A. Corma, J. Catal. 232, 342 (2005).

    Article  CAS  Google Scholar 

  83. L. Lakiss, F. Ngoye, C. Canaff, et al., J. Catal. 328, 165 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ostroumova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostroumova, V.A., Severina, V.A. & Maksimov, A.L. Comparison of Morphology and Physicochemical Properties of Embryonic and Nanosized ZSM-5 Zeolites and Their Use in the Dealkylation Reaction of Aromatic Hydrocarbons (a Review). Pet. Chem. 60, 909–922 (2020). https://doi.org/10.1134/S0965544120080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120080083

Keywords:

Navigation