Skip to main content
Log in

Catalytic Materials Based on Hydrotalcite-Like Aluminum, Magnesium, Nickel, and Cobalt Hydroxides: Effect of the Nickel/Cobalt Ratio on the Results of Partial Oxidation and Dry Reforming of Methane to Synthesis Gas

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Catalysts for the partial oxidation and dry reforming of methane based on hydroxo salts [AlMg2NixCoy(OH)6.08][(NO3) ⋅ nH2O], where x, y = 0, 0.005, 0.01, 0.02, 0.03, 0.035, and 0.04, with a hydrotalcite-like structure and a total Ni and/or Co content of no more than 2 wt % have been synthesized. It has been shown that Ni–Co catalysts with x = 0.03–0.035 and y = 0.005–0.01 provide a synthesis gas yield of 97–99% in both processes. At a low cobalt loading, the catalysts hardly form carbon nanotubes or other carbon depos-its.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hydrogen and Syngas Production and Purification Technologies, Ed. by K. Liu, C. Song, and V. Subramani (Wiley–AIChE, Hoboken, NJ, 2009).

  2. A. Holmen, Catal. Today 142, 2 (2009).

    Article  CAS  Google Scholar 

  3. B. C. Enger, R. Lodeng, and A. Holmen, Appl. Catal., A 346, 1 (2008).

  4. S. Zeng, X. Zhang, X. Fu, et al., Appl. Catal., B 136–137, 308 (2013).

    Article  Google Scholar 

  5. A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., Fuel Process. Technol. 148, 128 (2016).

    Article  CAS  Google Scholar 

  6. N. Ya. Usachev, V. V. Kharlamov, E. P. Belanova, et al., Pet. Chem. 51, 96 (2011).

    Article  CAS  Google Scholar 

  7. B. Zhenghong and Y. Fei, Adv. Bioenergy 3, 43 (2018).

    Article  Google Scholar 

  8. A. G. Dedov, A. S. Loktev, V. K. Ivanov, et al., Dokl. Phys. Chem. 461, 73 (2015).

    Article  CAS  Google Scholar 

  9. J. R. Rostrup-Nielsen and J. H. Bak Hansen, J. Catal. 144, 38 (1993).

    Article  CAS  Google Scholar 

  10. F. Basile, L. Basini, M. D’Amore, et al., J. Catal. 173, 247 (1998).

    Article  CAS  Google Scholar 

  11. Q. Yejun, C. Jixiang, and J. Zhang, J. Fuel Chem. Technol. 34, 450 (2006).

    Google Scholar 

  12. K. M. Lee and W. Y. Lee, Catal. Lett. 83, 65 (2002).

    Article  CAS  Google Scholar 

  13. K. Takehira, T. Shishido, P. Wan, et al., J. Catal. 221, 43 (2004).

    Article  CAS  Google Scholar 

  14. T. P. Maniecki, K. Bawolak-Olczak, P. Mierczyński, et al., Chem. Eng. J. 154, 142 (2009).

    Article  CAS  Google Scholar 

  15. J. Guo, H. Lou, H. Zhao, et al., Appl. Catal., A 273, 75 (2004).

  16. A. Bhattacharyya, V. W. Chang, and D. J. Schumacher, Appl. Clay Sci. 13, 317 (1998).

    Article  CAS  Google Scholar 

  17. T. Shishido, M. Sukenobu, H. Morioka, et al., Catal. Lett. 73, 21 (2001).

    Article  CAS  Google Scholar 

  18. A. I. Tsyganok, T. Tsunoda, S. Hamakawa, et al., J. Catal. 213, 191 (2003).

    Article  CAS  Google Scholar 

  19. Z. Hou and T. Yashima, Appl. Catal., A 261, 205 (2004).

  20. O. W. Perez-Lopez, A. Senger, N. R. Marcilio, and M. A. Lansarin, Appl. Catal., A 303, 234 (2006).

  21. A. Serrano-Lotina, L. Rodriguez, G. Muñoz, and L. Daza, J. Power Sources 196, 4404 (2011).

    Article  CAS  Google Scholar 

  22. A. Serrano-Lotina, A. J. Martin, M. A. Folgado, and L. Daza, Int. J. Hydrogen Energy 37, 12342 (2012).

    Article  CAS  Google Scholar 

  23. A. Serrano-Lotina and L. Daza, J. Power Sources 238, 81 (2013).

    Article  CAS  Google Scholar 

  24. A. Serrano-Lotina and L. Daza, Appl. Catal., A 474, 107 (2014).

  25. G. De Souza, C. Ruoso, N. R. Marcilio, and O. W. Perez-Lopez, Chem. Eng. Commun. 203, 783 (2016).

    CAS  Google Scholar 

  26. C. Tanios, S. Bsaibes, C. Gennequin, et al., Int. J. Hydrogen Energy 42, 12818 (2017).

    Article  CAS  Google Scholar 

  27. A. G. Dedov, A. S. Loktev, V. P. Danilov, et al., Pet. Chem. 58, 418 (2018).

    Article  CAS  Google Scholar 

  28. A. G. Dedov, A. S. Loktev, I. E. Mukhin, et al., Pet. Chem. 59, 385 (2019).

    Article  CAS  Google Scholar 

  29. O. N. Krasnobaeva, I. P. Belomestnykh, G. V. Isagulyants, et al., Russ. J. Inorg. Chem 52, 141 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Presidium of the Russian Academy of Sciences (program no. 14 “Physical Chemistry of Adsorption Phenomena and Actinide Nanoparticles”) and the Ministry of Education and Science of the Russian Federation in the framework of the state task, topic no. FSZE-2017-0008 (project no. 4.6718.2017/VU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Loktev.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedov, A.G., Loktev, A.S., Danilov, V.P. et al. Catalytic Materials Based on Hydrotalcite-Like Aluminum, Magnesium, Nickel, and Cobalt Hydroxides: Effect of the Nickel/Cobalt Ratio on the Results of Partial Oxidation and Dry Reforming of Methane to Synthesis Gas. Pet. Chem. 60, 194–203 (2020). https://doi.org/10.1134/S0965544120020048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120020048

Keywords:

Navigation