Skip to main content

Classification Approach to Assay of Crude Oils with Different Physicochemical Properties and Quality Parameters

Abstract

An approach to crude oil assay based on the consistent application of two heterogeneous classifications of oils is proposed: according to the quality index and physicochemical parameters. The methodological issues of the classification approach to oil analysis, implemented in the form of a two-stage procedure, are described. The approach is illustrated by an example of analysis of the characteristics features of different types of tight oils in Russia. The analysis used data from 25.190 oil samples with abnormal properties and 10 500 oil samples with complex modes of occurrence. At the first stage, the analysis has been carried out using the classification of tight oils according to the quality index; as a result, the oils were divided into three homogeneous classes: low, medium, and high quality oils. At the second stage of the analysis, the classification of oils by physicochemical characteristics has been used, taking into account the density; viscosity; sulfur, resin, asphaltene, wax, vanadium, nickel, and light end contents; gas saturation of oil; etc. The analysis made it possible to establish the characteristic features of the physicochemical properties of tight oils belonging to different quality classes.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Russian Encyclopedia of Geology, in three vols., Ed. by E. A. Kozlovskii and A. A. Ledovskikh (VSEGEI, St. Petersburg, 2010), Vol. 1 [in Russian].

    Google Scholar 

  2. Russian Encyclopedia of Geology, in three vols., Ed. by E. A. Kozlovskii and A. A. Ledovskikh (VSEGEI, St. Petersburg, 2010), Vol. 2 [in Russian].

    Google Scholar 

  3. Russian Encyclopedia of Geology, in three vols., Ed. by E. A. Kozlovskii and A. A. Ledovskikh (VSEGEI, St. Petersburg, 2010), Vol. 3 [in Russian].

    Google Scholar 

  4. I. G. Yashchenko and Yu. M. Polishchuk, Tight Oils: Physicochemical Properties and Occurrence Trends, Ed. by A. A. Novikov (V-Spektr, Tomsk, 2014) [in Russian].

    Google Scholar 

  5. F. R. Ismagilov, L. A. Kokhanchikov, T. S. Bogatyrev, and M. I. Denil’khanov, Khim. Tekhnol. Topl. Masel, No. 1, 3 (2011).

    Google Scholar 

  6. M. A. Lur’e and F. K. Shmidt, Chem. Technol. Fuels Oils 45, 242 (2009).

    Article  Google Scholar 

  7. G. P. Kayukova, S. A. Petrov, and G. V. Romanov, Khi-m. Tekhnol. Topl. Masel, No. 2, 22 (2014).

    Google Scholar 

  8. B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, et al., Khim. Tekhnol. Topl. Masel, No. 3, 6 (2014).

    Google Scholar 

  9. N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, et al., Khim. Tekhnol. Topl. Masel, No. 4, 30 (2014).

    Google Scholar 

  10. S. N. Volgin and V. A. Tyshchenko, Khim. Tekhnol. Topl. Masel, No. 5, 49 (2014).

    Google Scholar 

  11. R. Maksutov, G. Orlov, and A. Osipov, Tekhnol. TEK, No. 6, 36 (2005).

    Google Scholar 

  12. A. A. Petrov, Petroleum Hydrocarbons (Springer, Berlin, 1987).

    Book  Google Scholar 

  13. V. A. Uspenskii, O. A. Radchenko, and E. A. Glebovskaya, Principles of Genetic Classification of Bitumens (Nedra, Leningrad, 1964) [in Russian].

    Google Scholar 

  14. I. P. Purtova, A. I. Varichenko, and I. V. Shpurov, Nauka TEK, No. 6, 21 (2011).

  15. V. I. Ibraev, Forecasting the Stress State of Reservoirs and Seal Rocks of Western Siberia Oil and Gas Fields (Tyumenskii Dom Pechati, Tyumen, 2006) [in Russian].

    Google Scholar 

  16. Yu. M. Polishchuk and I. G. Yashchenko, Physicochemical Properties of Crude Oils: Statistical Analysis of Spatial–Temporal Changes (Geo, Novosibirsk, 2004) [in Russian].

  17. I. G. Yashchenko and Yu. M. Polishchuk, Gazov. Prom-st., No. 696, 45 (2013).

  18. I. G. Yashchenko and Yu. M. Polishchuk, Khim. Tekhnol. Topl. Masel, No. 4, 50 (2016).

    Google Scholar 

  19. N. N. Lisovskii and E. M. Khalimov, Vestn. TsKR Rosnedra, No. 6, 33 (2009).

    Google Scholar 

  20. I. V. Shpurov, A. E. Rastrogin, and V. G. Bratkova, Neft. Khoz., No. 12, 95 (2014).

  21. E. M. Khalimov, Geotechnologies for Oil Field Prospecting and Development: Selected Works (1958–2000) (IG-iRGI, Moscow, 2001) [in Russian].

  22. E. M. Khalimov, Geol. Geofiz. Razrab. Neftyan. Gazov. Mestorozhd., No. 11, 44 (2004).

  23. E. G. Luk’yanov, Yu. A. Trenin, and A. A. Derevyagin, Neftegaz. Delo, No. 1 (2008). http://www.ogbus.ru/ authors/Lukyanov/Lukyanov_1.pdf.

  24. S. P. Yakutseni, Occurrence of Hydrocarbon Minerals Enriched in Heavy Metal Impurities: Environmental Risk Assessment (Nedra, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  25. N. S. Bortnikov, in Scientific and Technical Problems of Arctic Exploration—Scientific Session of the General Meeting of RAS Members on December 16, 2014 (Nauka, Moscow, 2014), p. 40 [in Russian].

  26. Yu. M. Polishchuk and I. G. Yashenko, Earth’s Cryosphere 11 (1), 45 (2007).

    Google Scholar 

  27. D. G. Antoniadi, A. T. Koshelev, and P. A. Pustovoi, Neft’ Gaz Novatsii, No. 12, 60 (2010).

    Google Scholar 

  28. A. V. Ryl’kov and V. V. Poteryaev, Izv. Vyssh. Uchebn. Zaved., Neft’ Gaz, No. 1, 32 (2013).

    Google Scholar 

  29. Yu. M. Polishchuk and I. G. Yashchenko, Pet. Chem. 41, 247 (2001).

    Google Scholar 

  30. Yu. M. Polishchuk and I. G. Yashchenko, J. Pet. Geol. 29, 189 (2006).

    Article  Google Scholar 

  31. Yu. M. Polishchuk, I. G. Yashchenko, E. S. Kozin, and V. V. An, RU Patent No. 2001620067 (2001).

  32. TU (Technical Specification) 39-1623-93: Russian Oil to be Supplied for Export, in force from Feb 2, 1993 (IPTER AN RB).

  33. L. A. Avdeeva and N. S. Rashchepkina, Neft. Khoz., No. 4, 63 (1996).

  34. V. N. Degtyarev, Neft. Khoz., No. 3, 62 (1997).

  35. E. B. Kritskaya and D. V. Chizh, Vestn. Voronezhsk. Gos. Univ., Ser: Khim. Biol. Farm, No. 1, 21 (2013).

    Google Scholar 

  36. A. Korzhubaev, Neft’ Rossii, No. 3, 18 (2011).

    Google Scholar 

  37. A. R. Garushev, Neft. Khoz., No. 3, 65 (2009).

  38. A. R. Garushev, Tekhnol. Nefti Gaza, No. 1, 31 (2010).

    Google Scholar 

  39. New Russia Oil: Current State, Problems, and Prospects, Ed. by V. Yu. Alekperov (Drevlekhranilishche, Moscow, 2007) [in Russian].

    Google Scholar 

  40. R. Maksutov, G. Orlov, and A. Osipov, Tekhnol. TEK, No. 6, 36 (2005).

    Google Scholar 

  41. V. P. Yakutseni, Yu. E. Petrova, and A. A. Sukhanov, Neftegaz. Geol., Teor. Prakt. 2 (2007). http://www.ngtp.ru.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Yashchenko.

Additional information

Translated by S. Zatonsky

                                                                                                                                                                                APPENDIX

                                                                                                                                                                                APPENDIX

Classification of oils by physicochemical properties

Property

Oil class

Limits of change in classification intervals

Density, g/cm3

Very light

Less than 0.80

Light

0.80–0.84

With medium density

0.84–0.88

Heavy

With increased density

0.88–0.92

Extraheavy

0.92–0.96

Bituminous

More than 0.96

Viscosity at 20°С, mm2/s

Low viscosity

Less than 10

Medium viscosity

10–35

Viscous

With increased viscosity

35–100

Highly viscous

100–500

Extra viscous

More than 500

Sulfur content, wt %

Low sulfur

Less than 0.5

Medium sulfur

0.5–1

Sour

1–3

High sulfur

More than 3

Resin content, wt %

Slightly resinous

Less than 8

Medium resinous

8–13

Resinous

Moderately resinous

13–20

Highly resinous

20–30

Ultrahigh resin

More than 30

Asphaltene content, wt %

Low asphaltenic

Less than 3

Medium asphaltenic

3 –10

Highly asphaltenic

More than 10

Wax content, wt %

Low wax

Less than 1.5

Medium wax

1.5–6

Waxy

Moderately waxy

6– 10

Highly waxy

10–20

Ultrahigh wax

More than 20

Amount of IBP–200°C fraction, wt %

low content

Less than 15

medium content

15 –30

high content

More than 30

Amount of IBP–300°C fraction, wt %

low content

Less than 30

medium content

30–50

high content

More than 50

Amount of IBP–350°C fraction, wt %

low content

Less than 45

medium content

45–57

high content

More than 57

Gas saturation of oil, m3/t

with low gas saturation

Less than 200

with medium gas saturation

200–500

with high gas saturation

More than 500

Hydrogen sulfide content, wt %

with low content

Less than 5

with high content

More than 5

Vanadium content,

wt %

with low content

Less than 0.003

with high content

More than 0.003

Nickel content, wt %

with low content

Less than 0.007

with high content

More than 0.007

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yashchenko, I.G., Polishchuk, Y.M. Classification Approach to Assay of Crude Oils with Different Physicochemical Properties and Quality Parameters. Pet. Chem. 59, 1161–1168 (2019). https://doi.org/10.1134/S0965544119100116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119100116

Keywords:

  • classification of oils by quality
  • classification of oils by physicochemical parameters
  • tight oils
  • physicochemical properties of oils
  • oil quality index
  • oil quality classes