Skip to main content
Log in

Ultrahigh-Resolution Mass Spectrometry Analysis of Ozonation Products of Petroleum Nitrogen Compounds

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Changes that occur at the molecular level in the composition of nitrogen compounds of a petroleum sample from the Yuzno-Yagunskoe field during ozonation have been studied by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry in soft ionization modes. It has been found that N1Ox-containing products accumulate to form new classes of compounds, namely, N1O2, N1O3, N1O4, N1O5, N1O6, and N1O7, while N1 classes undergo degradation. Ozonation of 50% of the feedstock leads to a ~30% decrease in the number of identified empirical formulas of pyridine bases (N1 class).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. V. Hemmingsen, S. Kim, H. E. Pettersen, et al, Energy Fuels 20, 1980 (2006).

    Article  CAS  Google Scholar 

  2. C. S. Hsu, C. L. Hendrickson, R. P. Rodgers, et al., J. Mass Spectrom. 46, 337 (2011).

    Article  CAS  Google Scholar 

  3. S. K. Panda, J. T. Andersson, and W. Schrader, Angew. Chem., Int. Ed. Engl. 48, 1788 (2009).

    Article  CAS  Google Scholar 

  4. Z. Li, G. Wang, Q. Shi, et al., Ind. Eng. Chem. Res. 50, 4123 (2011).

    Article  CAS  Google Scholar 

  5. L. E. Zerpa, J. L. Salager, C. A. Koh, et al., Ind. Eng. Chem. Res. 50, 188 (2011).

    Article  CAS  Google Scholar 

  6. J. D. McLean and P. K. Kilpatrick, J. Colloid Interface Sci. 189, 242 (1997).

    Article  CAS  Google Scholar 

  7. P. Qiao, D. Harbottle, P. Tchoukov, et al., Energy Fuels 31, 3330 (2017).

    Article  CAS  Google Scholar 

  8. M. d. C. García and L. Carbognani, Energy Fuels 15, 1021 (2001).

    Article  Google Scholar 

  9. V. S. Aksenov, V. I. Titov, and V. F. Kam’yanov, Chem. Heterocycl. Compd. 15, 119 (1979).

    Article  Google Scholar 

  10. A. G. Marshall, C. L. Hendrickson, and G. S. Jackson, Mass Spectrom. Rev. 17, 1 (1998).

    Article  CAS  Google Scholar 

  11. A. G. Marshall and R. P. Rodgers, Acc. Chem. Res. 37, 53 (2004).

    Article  CAS  Google Scholar 

  12. C. A. Hughey, R. P. Rodgers, and A. G. Marshall, Anal. Chem. 74, 4145 (2002).

    Article  CAS  Google Scholar 

  13. E. Rogel and M. Witt, Energy Fuels 31, 3409 (2017).

    Article  CAS  Google Scholar 

  14. A. M. McKenna, J. M. Purcell, R. P. Rodgers, and A. G. Marshall, Energy Fuels 23, 2122 (2009).

    Article  CAS  Google Scholar 

  15. K. Qian, R. P. Rodgers, C. L. Hendrickson, et al., Energy Fuels 15, 492 (2001).

    Article  CAS  Google Scholar 

  16. T. H. Nguyen, S. Teratani, R. Tanaka, et al., Energy Fuels 31, 5673 (2017).

    Article  CAS  Google Scholar 

  17. M. Almarri, X. Ma, and C. Song, Ind. Eng. Chem. Res. 48, 951 (2009).

    Article  CAS  Google Scholar 

  18. M. Almarri, X. Ma, and C. Song, Ind. Eng. Chem. Res. 48, 652 (2008).

    Google Scholar 

  19. J. Kumar, C. Mewar, L. Malviya, et al., Ind. Eng. Chem. Res. 9, 397 (2014).

    Google Scholar 

  20. J. Narangerel and Y. J. Sugimoto, Jpn. Pet. Inst. 51, 165 (2008).

    Article  CAS  Google Scholar 

  21. L. Conceição, J. Oliveira, W. F. Oliveira, and S. Pergher, Braz. J. Pet. Gas 3, 159 (2009).

    Google Scholar 

  22. P. S. Bailey, Ozonation in Organic Chemistry, vol. 2: Nonolefinic Compounds (Academic, New York, 1982).

  23. Y. Kostyukevich, A. Stavitskaya, A. Zherebker, et al., Eur. J. Mass Spectrom. 23, 152 (2017).

    Article  CAS  Google Scholar 

  24. A. V. Stavitskaya, M. L. Konstantinova, and R. Z. Safieva, Pet. Chem. 56, 623 (2016).

    Article  CAS  Google Scholar 

  25. A. V. Stavitskaya, M. L. Konstantinova, S. D. Razumovskii, et al., Pet. Chem. 57, 1012 (2017).

    Article  CAS  Google Scholar 

  26. A. Stavitskaya, A. Glotov, E. Ivanov, et al., Chem. Technol. Fuels Oils 53, 891 (2018).

    Article  CAS  Google Scholar 

  27. S. K. Panda, K. J. Brockmann, T. Benter, and W. Schrader, Rapid Commun. Mass Spectrom. 25, 2317 (2011).

    Article  CAS  Google Scholar 

  28. Y. Liu, W. Wang, H. Qiuling, et al., Chin. Pet. Process. Petrochem. Technol. 14, 18 (2012).

    CAS  Google Scholar 

  29. S. K. Panda, J. T. Andersson, and W. Schrader, Anal. Bioanal. Chem. 389, 1329 (2007).

    Article  CAS  Google Scholar 

  30. G. C. Klein, R. P. Rodgers, and A. G. Marshall, Fuel 85, 2071 (2006).

    Article  CAS  Google Scholar 

  31. C. A. Hughey, R. P. Rodgers, A. G. Marshall, et al., Org. Geochem. 35, 863 (2004).

    Article  CAS  Google Scholar 

  32. G. P. Dalmaschio, M. M. Malacarne, V. M. D. L. de Almeida, et al., Fuel 115, 190 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-73-00342.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Stavitskaya or R. Z. Safieva.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavitskaya, A.V., Konstantinova, M.L., Podmasteriev, V.V. et al. Ultrahigh-Resolution Mass Spectrometry Analysis of Ozonation Products of Petroleum Nitrogen Compounds. Pet. Chem. 59, 1147–1152 (2019). https://doi.org/10.1134/S0965544119100104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119100104

Keywords:

Navigation