Skip to main content
Log in

Nickel–Tungsten and Nickel–Molybdenum Sulfide Diesel Hydrocarbon Hydrogenation Catalysts Synthesized in Pores of Aromatic Polymer Materials

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Porous aromatic polymer materials based on tetraphenylmethane molecules linked by methylene groups have been synthesized. By impregnating these materials with nickel–tungsten and nickel–molybdenum thiosalts, catalysts for the hydrogenation of bicyclic aromatic hydrocarbons of the diesel fraction have been prepared. Nanoparticles of the active sulfide phase are formed in support pores during the reaction; it is assumed that after the formation of the nanoparticles, the support material will undergo partial degradation to rearrange the mesoporous structure into a macroporous structure providing the best diffusion of substrates to the surface of the sulfide nanoparticles. The synthesized catalysts have been tested in the hydrogenation of naphthalene and naphthalene derivatives at a hydrogen pressure of 5 MPa and a temperature of 380°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. W. Ward, Fuel Process. Technol. 35, 55 (1993).

    Article  CAS  Google Scholar 

  2. A. Primo and H. Garcia, Chem. Soc. Rev. 43, 7548 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Z. Liu, L. Zhang, J. Jiang, et al., Adv. Chem. Eng. Sci. 3, 36 (2013).

    Article  CAS  Google Scholar 

  4. G. Kishan, L. Coulier, J. A. van Veen, and J. Niemantsverdriet, J. Catal. 200, 194 (2001).

    Article  CAS  Google Scholar 

  5. D. Parviz, M. Kazemeini, A. M. Rashidi, and K. Jafari Jozani, Sci. Iran 18, 479 (2011).

    Article  CAS  Google Scholar 

  6. H. Farag, D. D. Whitehurst, and M. Isao, Ind. Eng. Chem. Res. 37, 3533 (1998).

    Article  CAS  Google Scholar 

  7. B. Yoosuk, J. H. Kim, C. Song, et al., Catal. Today 130, 14 (2008).

    Article  CAS  Google Scholar 

  8. A. L. Maximov, I. A. Sizova, and S. N. Khadzhiev, Pure Appl. Chem. 89, 1145 (2017).

    Article  CAS  Google Scholar 

  9. S. G. A. Ferraz, B. M. Santos, F. M. Z. Zotin, et al., Ind. Eng. Chem. Res. 54, 2646 (2015).

    Article  CAS  Google Scholar 

  10. Y. Okamoto, K. Ochiai, M. Kawano, et al., Appl. Catal., A 226, 115 (2002).

  11. O. Y. Gutiérrez, S. Singh, E. Schachtl, et al., ACS Catal. 4, 1487 (2014).

    Article  CAS  Google Scholar 

  12. H. Topsøe, Appl. Catal., A 322, 3 (2007).

  13. A. Martín-Gullón, C. Prado-Burguete, and F. Rodríguez-Reinoso, Carbon 31, 1099 (1993).

    Article  Google Scholar 

  14. S. M. A. M. Bouwens, R. Prins, V. H. J. De Beer, and D. C. Koningsberger, J. Phys. Chem. 94, 3711 (1990).

    Article  CAS  Google Scholar 

  15. A. L. Maksimov, E. A. Karakhanov, L. A. Kulikov, and M. V. Terenina, Pet. Chem. 57, 589 (2017).

    Article  CAS  Google Scholar 

  16. M. P. Boronoev, M. A. Vinnikova, V. I. Ignat’eva, et al., Pet. Chem. 57, 855 (2017).

    Article  CAS  Google Scholar 

  17. E. Karakhanov, Y. Kardasheva, L. Kulikov, et al., Catalysts 6, 122 (2016).

    Article  CAS  Google Scholar 

  18. L. A. Kulikov, M. P. Boronoev, D. A. Makeeva, et al., Khim. Tekhnol. Topl. Masel, No. 6, 53 (2018).

    Google Scholar 

  19. X. Jing, D. Zou, P. Cui, et al., J. Mater. Chem. A 1, 13926 (2013).

    Article  CAS  Google Scholar 

  20. M. Errahali, G. Gatti, L. Tei, et al., J. Phys. Chem. C 118, 28699 (2014).

    Article  CAS  Google Scholar 

  21. D. Yuan, W. Lu, D. Zhao, and H.-C. Zhou, Adv. Mater. 23, 3723 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. E. Verde-Sesto, M. Pintado-Sierra, A. Corma, et al., Chem.–A Eur. J. 20, 5111 (2014).

    Article  CAS  Google Scholar 

  23. P. K. Kundu, G. L. Olsen, V. Kiss, and R. Klajn, Nat. Commun. 5, 3588 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. G. Barin, G. W. Peterson, V. Crocella, et al., Chem. Sci. 8, 4399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Li, H. Ren, Y. Yuanet al., J. Mater. Chem. A 2, 11091 (2014).

    Article  CAS  Google Scholar 

  26. R. Dawson, L. A. Stevens, T. C. Drage, et al., J. Am. Chem. Soc. 134, 10741 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. P. Cui, X. -F. Jing, Y. Yuan, and G. -S. Zhu, Chin. Chem. Lett. 27, 1479 (2016).

    Article  CAS  Google Scholar 

  28. A. Maximov, A. Zolotukhina, L. Kulikov, et al., React. Kinet. Mech. Catal. 117, 729 (2016).

    Article  CAS  Google Scholar 

  29. T. Ben, C. Pei, D. Zhang, et al., Energy Environ. Sci. 4, 3991 (2011).

    Article  CAS  Google Scholar 

  30. E. Karakhanov, A. Maximov, Y. Kardasheva, et al., Catalysts 8, 397 (2018).

    Article  CAS  Google Scholar 

  31. I. A. Sizova, A. B. Kulikov, M. I. Onishchenko, et al., Pet. Chem. 56, 44 (2016).

    Article  CAS  Google Scholar 

  32. B. Demirel and W. H. Wiser, Fuel Process. Technol. 53, 157 (1997).

    Article  CAS  Google Scholar 

  33. P. Arias, J. Cambra, B. Guemez, et al., Fuel Process. Technol. 64, 117 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Karakhanov.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batryshin, R.A., Makeeva, D.A., Kulikov, L.A. et al. Nickel–Tungsten and Nickel–Molybdenum Sulfide Diesel Hydrocarbon Hydrogenation Catalysts Synthesized in Pores of Aromatic Polymer Materials. Pet. Chem. 59, 575–580 (2019). https://doi.org/10.1134/S0965544119060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119060069

Keywords:

Navigation