Skip to main content
Log in

Mechanism of Fischer–Tropsch Synthesis over Nanosized Catalyst Particles: Approaches and Problems of Ab Initio Calculations

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The main results of calculations of energy parameters performed by ab initio methods (DFT) for steps of the mechanism of Fischer–Tropsch synthesis involving cobalt- and iron-containing catalytic systems which have been published over the last decade and a half are analyzed. Primary attention is paid to the results somehow characterizing a transition from catalyst representation as crystallographically ideal surfaces of metals to the realistic models of nanoparticles both homogeneous crystallochemically and containing surface defects and/or heteroatoms. It is shown that little attention is given to the calculations of iron-containing catalysts compared with cobalt-containing ones and the calculations of chain growth steps compared with steps through formation of single-carbon compounds; the methodological problems of applying DFT to nanoparticles suspended in a liquid medium are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. B. Rapoport, Synthetic Liquid Fuel. Part 2. Synthesis of Motor Fuels from Carbon Monoxide and Hydrogen (Gostoptekhizdat, Moscow, 1950) [in Russian].

  2. H. H. Storch, N. Golumbic, and R. B. Anderson, The Fischer-Tropsch and Related Synthesis (Wiley, New York, 1951; Inostrannaya Literatura, Moscow, 1954).

  3. G. Henrici-Olivé and S. Olivé, The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide (Springer, Berlin, 1984).

    Book  Google Scholar 

  4. R. B. Anderson, The Fischer-Tropsch Synthesis (Academic, New York, 1984).

    Google Scholar 

  5. S. N. Khadzhiev, A. S. Lyadov, M. V. Krylova, and A. Yu. Krylova, Pet. Chem. 51, 24 (2011).

    Article  CAS  Google Scholar 

  6. M. V. Kulikova and S. N. Khadzhiev, Pet. Chem. 57, 1173 (2017).

    Article  CAS  Google Scholar 

  7. M. V. Kulikova, O. S. Dement’eva, A. E. Kuz’min, and M. V. Chudakova, Pet. Chem. 56 (12), 1140 (2016).

    Article  CAS  Google Scholar 

  8. C. S. Kellner and A. T. Bell, J. Catal. 75, 251 (1982).

    Article  CAS  Google Scholar 

  9. G. L. Bezemer, J. H. Bitter, H. P. C. E. Kuipers, and H. Oosterbeek, J. E. E. Holewijn, X. Xu, F. Kapteijn, A. J. van Dillen, and K. P. De Jong, J. Am. Chem. Soc. 128, 3956 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. V. R. R. Pendyala, G. Jacobs, W. Ma, J. L. S. Klettinger, C. H. Yen, and B. H. Davis, Chem. Eng. J. 249, 279 (2014).

    Article  CAS  Google Scholar 

  11. Q. Zhang, W. Deng, and Y. Wang, J. Energy Chem. 22, 27 (2013).

    Article  Google Scholar 

  12. C. K. Poorter, Chem. Rev. 81, 447 (1981).

    Article  Google Scholar 

  13. M. E. Dry, Appl. Catal., A 138, 319 (1996).

  14. F. Fischer and H. Tropsch, Brennstoff-Chem. 7, 97 (1926).

    CAS  Google Scholar 

  15. V. A. A. van Barneveld and V. Ponec, J. Catal. 88, 382 (1984).

    Article  CAS  Google Scholar 

  16. J. T. Kummer and P. H. Emmett, J. Am. Chem. Soc. 75, 5177 (1953).

    Article  CAS  Google Scholar 

  17. Ya. T. Eidus, Russ. Chem. Rev. 36, 338 (1967).

    Article  Google Scholar 

  18. H. Pichler and H. Schulz, Chem. Ing. Tech. 42, 7162 (1970).

    Article  Google Scholar 

  19. G. Henrici-Olive and S. Olive, Angew. Chem., Int. Ed. Engl. 55, 136 (1976).

    Article  Google Scholar 

  20. O. N. Temkin, A. V. Zeigarnik, A. E. Kuz’min, L. G. Bruk, and E. V. Slivinskii, Russ. Chem. Bull. 51, 1 (2002).

    Article  CAS  Google Scholar 

  21. W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2002), 293 p.

    Google Scholar 

  22. C. J. Cramer and D. G. Truhlar, Chem. Phys. Phys. Chem. 11, 10757 (2009).

    Article  CAS  Google Scholar 

  23. A. E. Matsson, P. A. Schultz, M. P. Desjarlais, T. R. Matsson, and K. Leung, Model. Numer. Simul. Mater. Sci. 13, 1 (2005).

    Article  CAS  Google Scholar 

  24. Y. Qi, J. Yang, D. Chen, and A. Holmen, Catal. Lett. 145, 145 (2015).

    Article  CAS  Google Scholar 

  25. X. Xu, P. Tian, Y. Cao, J. Xu, and Y. Han, Chem. Model. 12, 184 (2016).

    Article  CAS  Google Scholar 

  26. S. R. Houska, B. L. Averbach, and M. Cohen, Acta Metall. 8, 81 (1960).

    Article  Google Scholar 

  27. B. W. Lee, R. Alsenz, A. Ignatiev, and M. A. van Hove, Phys. Rev. 17, 1510.

  28. O. Kitakami, H. Sato, Y. Shimada, F. Sato, M. Tanaka, Phys. Rev. 56, 13849.

  29. M. K. Gnanamani, G. Jacobs, W. D. Shafer, and B. H. Davis, Catal. Today 215, 13 (2013).

    Article  CAS  Google Scholar 

  30. H. Karaca, O. V. Safonova, S. Chambrey, P. Fongarland, P. Roussel, A. Griboval-Constant, M. Lacroix, and A. Y. Khodakov, J. Catal. 277, 14 (2011).

    Article  CAS  Google Scholar 

  31. J.-X. Liu, H. Y. Su, D.-P. Sun, B.-Y. Zhang, and W.-X. Li, J. Am. Chem. Soc. 135, 16284 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. S. E. Mason, I. Grinberg, and A. M. Rappe, Phys. Rev. 69, 161401.

  33. F. Ablid-Pedersen and M. P. Andersson, Surf. Sci. 601, 1747 (2007).

    Article  CAS  Google Scholar 

  34. M. E. Bridge, C. M. Comrie, and R. M. Lambert, Surf. Sci. 67, 393 (1977).

    Article  CAS  Google Scholar 

  35. H. Papp, Surf. Sci. 601, 5571 (1983).

    Google Scholar 

  36. S. Liu, Y.-W. Li, J. Wang, and H. Jiao, Catal. Sci. Technol. 6, 8336 (2016).

    Article  CAS  Google Scholar 

  37. B.-T. Teng, X.-D. Wen, M. Fan, F.-M. Wu, and Y. Zhang, Phys. Chem. Chem. Phys. 16, 18563 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Y. Qi, J. Yang, X. Duan, Y.-A. Zhu, D. Chen, and A. Holmen, Catal. Sci. Technol. 4, 3534 (2014).

    Article  CAS  Google Scholar 

  39. M. Ojeda, R. Nabar, A. U. Nilekar, A. Ishikawa, M. Mavrikikakis, and E. Iglesia, J. Catal. 272, 287 (2010).

    Article  CAS  Google Scholar 

  40. M. K. Zhuo, A. Borgna, and M. Saeys, J. Catal. 297, 217 (2013).

    Article  CAS  Google Scholar 

  41. J. R. Inderwildi, S. J. Jenkins, and D. A. King, J. Phys. Chem. 112, 1305.

  42. M. K. Zhuo, K. F. Tan, A. Borgna, and M. Saeys, J. Phys. Chem. 113, 8357.

  43. A. Asiaee and K. M. Benjamin, Mol. Catal. 436, 218 (2017).

    Article  CAS  Google Scholar 

  44. X. Q. Gong, R. Raval, and P. Hu, Surf. Sci. 562, 247 (2004).

    Article  CAS  Google Scholar 

  45. C. F. Huo, Y.-W. Li, J. G. Wang, and H. J. Jiao, J. Phys. Chem. 112, 14108.

  46. S. Shetty and R. A. van Santen, Phys. Chem. Chem. Phys. 12, 6330 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. R. Zhang, F. Liu, Q. Wang, B. Wang, and D. Li, Appl. Catal., A 525, 76 (2016).

  48. C. Chen, Q. Wang, G. Wang, B. Hou, L. Jia, and D. Li, J. Phys. Chem. 120, 9132.

  49. J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Phys. Chem. 112, 9464.

  50. Y. Qi, J. Yang, X. Duan, Y.-A. Zhu, D. Chen, and A. Holmen, Catal. Sci. Technol. 4, 3534 (2014).

    Article  CAS  Google Scholar 

  51. J. Cheng, X. Q. Gong, P. Hu, S. M. Lok, P. Ellis, and S. French, J. Catal. 254, 285 (2008).

    Article  CAS  Google Scholar 

  52. G. Wen, Q. Wang, R. Zhang, D. Li, and B. Wang, Phys. Chem. Chem. Phys. 18, 27 272 (2016).

    Article  CAS  Google Scholar 

  53. J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Phys. Chem. 114, 1085.

  54. H. Liu, R. Zhang, L. Ling, Q. Wang, B. Wang, and D. Li, Catal. Sci. Technol. 7, 3758 (2017).

    Article  CAS  Google Scholar 

  55. J. Cheng, T. Song, P. Hu, S. M. Lok, P. Ellis, and S. French, J. Catal. 255, 20 (2008).

    Article  CAS  Google Scholar 

  56. Y. Qi, C. Ledesma, J. Yang, X. Duan, Y.-A. Zhu, A. Holmen, and D. Chen, J. Catal. 349, 110 (2017).

    Article  CAS  Google Scholar 

  57. A. Asiaee and K. M. Benjamin, Mol. Catal. 436, 210 (2017).

    Article  CAS  Google Scholar 

  58. J. -X. Liu, H. Y. Su, and W.-X. Li, Catal. Today 215, 36 (2013).

    Article  CAS  Google Scholar 

  59. Q. F. Ge and M. Neurock, J. Phys. Chem. B 110, 15368 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. R. A. van Santen, I. M. Ciobica, E. van Steen, and M. M. Ghouri, Adv. Catal. 54, 121 (2011).

    Google Scholar 

  61. R. Zhang, L. Kang, H. Liu, L. He, B. Wang, Comput. Mater. Sci. 145, 263 (2018).

    Article  CAS  Google Scholar 

  62. X. Q. Gong, R. Raval, and P. Hu, J. Chem. Phys. 122, 024711 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Catal. 257, 221 (2008).

    Article  CAS  Google Scholar 

  64. H.-Y. Su, Y. Zhao, J.-X. Liu, K. Sun, and W.-X. Li, Catal. Sci. Technol. 7, 2967 (2017).

    Article  CAS  Google Scholar 

  65. P. van Helden, J.-A. van den Berg, M. A. Petersen, W. Janse van Rensburg, I. M. Ciobica, and J. van de Loosdrecht, Faraday Discuss. 197, 117 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. P. van Helden, J.-A. van den Berg, and I. M. Ciobica, Catal. Sci. Technol. 2, 491 (2012).

    Article  CAS  Google Scholar 

  67. M. A. Petersen and J.-A. van den Berg, I. M., Ciobica, and P. van Helden, ACS Catal. 7, 1984 (2017).

    Article  CAS  Google Scholar 

  68. A. Banerjee, A. P. van Bavel, H. P. C. E. Kuipers, and M. Saeys, ACS Catal. 7, 5289 (2017).

    Article  CAS  Google Scholar 

  69. A. Banerjee, A. P. van Bavel, H. P. C. E. Kuipers, and M. Saeys, ACS Catal. 5, 4756 (2015).

    Article  CAS  Google Scholar 

  70. R. Zhang, G. Wen, H. Adidharma, A. G. Russell, B. Wang, M. Radosz, and M. Fan, ACS Catal. 7, 8285 (2017).

    Article  CAS  Google Scholar 

  71. Y.-P. Pei, J.-X. Liu, Y.-H. Zhao, Y.-J. Ding, T. Liu, W.-D. Dong, H.-J. Zhu, H.-Y. Su, L. Yan, J.-L. Li, and W.-X. Li, ACS Catal. 5, 3620 (2015).

    Article  CAS  Google Scholar 

  72. L. Joos, I. A. W. Filot, S. Cottenier, E. J. M. Hensen, M. Waroquier, V. van Speybroeck, and R. A. van Santen, J. Phys. Chem. 118, 5317.

  73. P. Zhai, P-P. Chen, J. Xie, J. -X. Liu, H. Zhao, L. Lin, B. Zhao, H.-Y. Su, Q. Zhu, W.-X. Li, and D. Ma, Faraday Discuss. 197, 207 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. M. Valero Corral and P. Raybaud, J. Phys. Chem. 118, 22 479.

  75. M. D. Stroemsheim, I.-H. Svenum, M. H. Farstad, Z. Li, L. Gavrilovic, X. Guo, S. Lervold, A. Borg, and H. J. Venvik, Catal. Today 299, 37 (2018).

    Article  CAS  Google Scholar 

  76. X.-C. Xu, J. Su, P. Tian, D. Fu, W. Dai, W. Mao, W.-K. Yuan, J. Xu, and Y.-F. Han, J. Phys. Chem. 119, 216 (2015).

    CAS  Google Scholar 

  77. G. Prieto, S. Beijer, M. L. Smith, M. He, Y. Au, Z. Wang, D. A. Bruce, K. P. de Jong, J. J. Spivey, and P. E. de Jongh, Angew. Chem., Int. Ed. Engl. 53, 6397 (2014).

    Article  CAS  Google Scholar 

  78. T. van Heerden and E. van Steen, Faraday Discuss. 197, 87 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. P. C. Psarras and D. W. Ball, Comput. Theor. Chem. 1063, 1 (2015).

    Article  CAS  Google Scholar 

  80. J. L. C. Fajin, M. N. D. S. Cordeiro, and J. R. B. Gomes, Catalysts 5, 3 (2015).

    Article  CAS  Google Scholar 

  81. M. Melander and K. Laasonen, J. Mol. Catal. A: Chem. 406, 31 (2015).

    Article  CAS  Google Scholar 

  82. S. Zhao, X.-W. Liu, C.-F. Huo, X.-D. Wen, W. CaoD, Guo, Y. Yang, Y.-W. Li, J. Wang, and H. Jiao, Catal. Today 261, 93 (2016).

    Article  CAS  Google Scholar 

  83. M. R. Elahifard, M. P. Jigato, and J. W. Niemantsverdriet, Chem. Phys. Chem. 13, 89 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. S. Amaya-Roncancio, D. H. Linares, K. Sapag, and M. I. Rojas, Appl. Surf. Sci. 346, 438 (2015).

    Article  CAS  Google Scholar 

  85. S. Amaya-Roncancio, D. H. Linares, H. A. Duarte, and K. Sapag, J. Phys. Chem. 120, 10830.

  86. J. M. H. Lo and T. Ziegler, J. Phys. Chem. 111, 13149.

  87. J. M. H. Lo and T. Ziegler, J. Phys. Chem. 112, 13681.

  88. H.-J. Li, C.-C. Chang, and J.-J. Ho, J. Phys. Chem. 115, 11045.

  89. S. Booyens, M. Bowker, and D. J. Willock, Surf. Sci. 625, 69 (2014).

    Article  CAS  Google Scholar 

  90. D. Borthwick, V. Fiorin, S. J. Jenkins, and D. A. King, Surf. Sci. 602, 2325 (2008).

    Article  CAS  Google Scholar 

  91. D.-B. Cao, Y.-W. Li, J. Wang, and H. Jiao, J. Mol. Catal. A: Chem. 346, 55 (2011).

    Article  CAS  Google Scholar 

  92. M. O. Ozbek and J. W. Niemantsverdriet, J. Catal. 325, 9 (2015).

    Article  CAS  Google Scholar 

  93. T. H. Pham, X. Duan, G. Qian, X. Zhou, and D. Chen, J. Phys. Chem. 118, 10170.

  94. G. Cilpa-Karhu and K. Laasonen, Phys. Chem. Chem. Phys. 20, 2741 (2017).

    Article  Google Scholar 

  95. T. H. Pham, Y. Qi, J. Yang, X. Duan, G. Qian, X. Zhou, D. Chen, and W. Yuan, ACS Catal. 5, 2203 (2015).

    Article  CAS  Google Scholar 

  96. D.-B. Cao, F-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Phys. Chem. B 109, 10922.

  97. D.-B. Cao, S.-G. Wang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem. 272, 275 (2007).

    Article  CAS  Google Scholar 

  98. L.-J. Deng, C.-F. Huo, X.-W. Liu, X.-H. Zhao, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 114, 21585.

  99. Y. Wang, Y. Li, S. Huang, J. Wang, H. Wang, J. Lv, and X. Ma, Chem. Phys. Lett. 682, 115 (2017).

    Article  CAS  Google Scholar 

  100. X. Yu, X. Zhang, Y. Meng, Y. Zhao, Y. Li, W. Xu, Z. Liu, Appl. Surf. Sci. 434, 464 (2018).

    Article  CAS  Google Scholar 

  101. C.-M. Deng, C.-F. Huo, L.-L. Bao, G. Feng, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 112, 19018.

  102. C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao, J. Am. Chem. Soc. 131, 14713 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. M. A. Petersen and W. J. van Rensburg, Top. Catal. 58, 665 (2015).

    Article  CAS  Google Scholar 

  104. J. G. de la Cruz, M. K. Sabbe, and M.-F. Reyniers, J. Phys. Chem. 121, 25052.

  105. L. Zheng, X. Liu, Y. Meng, Y. Zhou, Y. Yang, H. Jiao, Y.-W. Li, X.-D. Wen, W. Guo, and Q. Peng, Phys. Chem. Chem. Phys. 18, 32944 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. M. A. Petersen, M. J. Cariem, M. Claeys, and E. van Steen, Appl. Catal., A 496, 64 (2015).

  107. M. H. Mahyuddin, R. V. Belosludov, M. Khazaei, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. 115, 23893.

  108. M. R. Elahifard, E. Fazeli, A. Joshani, and M. R. Gholami, Surf. Interface Anal. 45, 1081 (2013).

    Article  CAS  Google Scholar 

  109. X. Tian, T. Wang, Y. Yang, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 118, 20472.

  110. W. Wang, Y. Wang, and G.-C. Wang, J. Phys. Chem. 121, 6820.

Download references

ACKNOWLEDGMENTS

This work performed at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, was supported by the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kuzmin.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, A.E., Kulikova, M.V. & Maximov, A.L. Mechanism of Fischer–Tropsch Synthesis over Nanosized Catalyst Particles: Approaches and Problems of Ab Initio Calculations. Pet. Chem. 59, 485–497 (2019). https://doi.org/10.1134/S0965544119050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119050050

Keywords:

Navigation