Abstract
The main results of calculations of energy parameters performed by ab initio methods (DFT) for steps of the mechanism of Fischer–Tropsch synthesis involving cobalt- and iron-containing catalytic systems which have been published over the last decade and a half are analyzed. Primary attention is paid to the results somehow characterizing a transition from catalyst representation as crystallographically ideal surfaces of metals to the realistic models of nanoparticles both homogeneous crystallochemically and containing surface defects and/or heteroatoms. It is shown that little attention is given to the calculations of iron-containing catalysts compared with cobalt-containing ones and the calculations of chain growth steps compared with steps through formation of single-carbon compounds; the methodological problems of applying DFT to nanoparticles suspended in a liquid medium are highlighted.
Similar content being viewed by others
REFERENCES
I. B. Rapoport, Synthetic Liquid Fuel. Part 2. Synthesis of Motor Fuels from Carbon Monoxide and Hydrogen (Gostoptekhizdat, Moscow, 1950) [in Russian].
H. H. Storch, N. Golumbic, and R. B. Anderson, The Fischer-Tropsch and Related Synthesis (Wiley, New York, 1951; Inostrannaya Literatura, Moscow, 1954).
G. Henrici-Olivé and S. Olivé, The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide (Springer, Berlin, 1984).
R. B. Anderson, The Fischer-Tropsch Synthesis (Academic, New York, 1984).
S. N. Khadzhiev, A. S. Lyadov, M. V. Krylova, and A. Yu. Krylova, Pet. Chem. 51, 24 (2011).
M. V. Kulikova and S. N. Khadzhiev, Pet. Chem. 57, 1173 (2017).
M. V. Kulikova, O. S. Dement’eva, A. E. Kuz’min, and M. V. Chudakova, Pet. Chem. 56 (12), 1140 (2016).
C. S. Kellner and A. T. Bell, J. Catal. 75, 251 (1982).
G. L. Bezemer, J. H. Bitter, H. P. C. E. Kuipers, and H. Oosterbeek, J. E. E. Holewijn, X. Xu, F. Kapteijn, A. J. van Dillen, and K. P. De Jong, J. Am. Chem. Soc. 128, 3956 (2006).
V. R. R. Pendyala, G. Jacobs, W. Ma, J. L. S. Klettinger, C. H. Yen, and B. H. Davis, Chem. Eng. J. 249, 279 (2014).
Q. Zhang, W. Deng, and Y. Wang, J. Energy Chem. 22, 27 (2013).
C. K. Poorter, Chem. Rev. 81, 447 (1981).
M. E. Dry, Appl. Catal., A 138, 319 (1996).
F. Fischer and H. Tropsch, Brennstoff-Chem. 7, 97 (1926).
V. A. A. van Barneveld and V. Ponec, J. Catal. 88, 382 (1984).
J. T. Kummer and P. H. Emmett, J. Am. Chem. Soc. 75, 5177 (1953).
Ya. T. Eidus, Russ. Chem. Rev. 36, 338 (1967).
H. Pichler and H. Schulz, Chem. Ing. Tech. 42, 7162 (1970).
G. Henrici-Olive and S. Olive, Angew. Chem., Int. Ed. Engl. 55, 136 (1976).
O. N. Temkin, A. V. Zeigarnik, A. E. Kuz’min, L. G. Bruk, and E. V. Slivinskii, Russ. Chem. Bull. 51, 1 (2002).
W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2002), 293 p.
C. J. Cramer and D. G. Truhlar, Chem. Phys. Phys. Chem. 11, 10757 (2009).
A. E. Matsson, P. A. Schultz, M. P. Desjarlais, T. R. Matsson, and K. Leung, Model. Numer. Simul. Mater. Sci. 13, 1 (2005).
Y. Qi, J. Yang, D. Chen, and A. Holmen, Catal. Lett. 145, 145 (2015).
X. Xu, P. Tian, Y. Cao, J. Xu, and Y. Han, Chem. Model. 12, 184 (2016).
S. R. Houska, B. L. Averbach, and M. Cohen, Acta Metall. 8, 81 (1960).
B. W. Lee, R. Alsenz, A. Ignatiev, and M. A. van Hove, Phys. Rev. 17, 1510.
O. Kitakami, H. Sato, Y. Shimada, F. Sato, M. Tanaka, Phys. Rev. 56, 13849.
M. K. Gnanamani, G. Jacobs, W. D. Shafer, and B. H. Davis, Catal. Today 215, 13 (2013).
H. Karaca, O. V. Safonova, S. Chambrey, P. Fongarland, P. Roussel, A. Griboval-Constant, M. Lacroix, and A. Y. Khodakov, J. Catal. 277, 14 (2011).
J.-X. Liu, H. Y. Su, D.-P. Sun, B.-Y. Zhang, and W.-X. Li, J. Am. Chem. Soc. 135, 16284 (2013).
S. E. Mason, I. Grinberg, and A. M. Rappe, Phys. Rev. 69, 161401.
F. Ablid-Pedersen and M. P. Andersson, Surf. Sci. 601, 1747 (2007).
M. E. Bridge, C. M. Comrie, and R. M. Lambert, Surf. Sci. 67, 393 (1977).
H. Papp, Surf. Sci. 601, 5571 (1983).
S. Liu, Y.-W. Li, J. Wang, and H. Jiao, Catal. Sci. Technol. 6, 8336 (2016).
B.-T. Teng, X.-D. Wen, M. Fan, F.-M. Wu, and Y. Zhang, Phys. Chem. Chem. Phys. 16, 18563 (2014).
Y. Qi, J. Yang, X. Duan, Y.-A. Zhu, D. Chen, and A. Holmen, Catal. Sci. Technol. 4, 3534 (2014).
M. Ojeda, R. Nabar, A. U. Nilekar, A. Ishikawa, M. Mavrikikakis, and E. Iglesia, J. Catal. 272, 287 (2010).
M. K. Zhuo, A. Borgna, and M. Saeys, J. Catal. 297, 217 (2013).
J. R. Inderwildi, S. J. Jenkins, and D. A. King, J. Phys. Chem. 112, 1305.
M. K. Zhuo, K. F. Tan, A. Borgna, and M. Saeys, J. Phys. Chem. 113, 8357.
A. Asiaee and K. M. Benjamin, Mol. Catal. 436, 218 (2017).
X. Q. Gong, R. Raval, and P. Hu, Surf. Sci. 562, 247 (2004).
C. F. Huo, Y.-W. Li, J. G. Wang, and H. J. Jiao, J. Phys. Chem. 112, 14108.
S. Shetty and R. A. van Santen, Phys. Chem. Chem. Phys. 12, 6330 (2010).
R. Zhang, F. Liu, Q. Wang, B. Wang, and D. Li, Appl. Catal., A 525, 76 (2016).
C. Chen, Q. Wang, G. Wang, B. Hou, L. Jia, and D. Li, J. Phys. Chem. 120, 9132.
J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Phys. Chem. 112, 9464.
Y. Qi, J. Yang, X. Duan, Y.-A. Zhu, D. Chen, and A. Holmen, Catal. Sci. Technol. 4, 3534 (2014).
J. Cheng, X. Q. Gong, P. Hu, S. M. Lok, P. Ellis, and S. French, J. Catal. 254, 285 (2008).
G. Wen, Q. Wang, R. Zhang, D. Li, and B. Wang, Phys. Chem. Chem. Phys. 18, 27 272 (2016).
J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Phys. Chem. 114, 1085.
H. Liu, R. Zhang, L. Ling, Q. Wang, B. Wang, and D. Li, Catal. Sci. Technol. 7, 3758 (2017).
J. Cheng, T. Song, P. Hu, S. M. Lok, P. Ellis, and S. French, J. Catal. 255, 20 (2008).
Y. Qi, C. Ledesma, J. Yang, X. Duan, Y.-A. Zhu, A. Holmen, and D. Chen, J. Catal. 349, 110 (2017).
A. Asiaee and K. M. Benjamin, Mol. Catal. 436, 210 (2017).
J. -X. Liu, H. Y. Su, and W.-X. Li, Catal. Today 215, 36 (2013).
Q. F. Ge and M. Neurock, J. Phys. Chem. B 110, 15368 (2006).
R. A. van Santen, I. M. Ciobica, E. van Steen, and M. M. Ghouri, Adv. Catal. 54, 121 (2011).
R. Zhang, L. Kang, H. Liu, L. He, B. Wang, Comput. Mater. Sci. 145, 263 (2018).
X. Q. Gong, R. Raval, and P. Hu, J. Chem. Phys. 122, 024711 (2005).
J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Catal. 257, 221 (2008).
H.-Y. Su, Y. Zhao, J.-X. Liu, K. Sun, and W.-X. Li, Catal. Sci. Technol. 7, 2967 (2017).
P. van Helden, J.-A. van den Berg, M. A. Petersen, W. Janse van Rensburg, I. M. Ciobica, and J. van de Loosdrecht, Faraday Discuss. 197, 117 (2017).
P. van Helden, J.-A. van den Berg, and I. M. Ciobica, Catal. Sci. Technol. 2, 491 (2012).
M. A. Petersen and J.-A. van den Berg, I. M., Ciobica, and P. van Helden, ACS Catal. 7, 1984 (2017).
A. Banerjee, A. P. van Bavel, H. P. C. E. Kuipers, and M. Saeys, ACS Catal. 7, 5289 (2017).
A. Banerjee, A. P. van Bavel, H. P. C. E. Kuipers, and M. Saeys, ACS Catal. 5, 4756 (2015).
R. Zhang, G. Wen, H. Adidharma, A. G. Russell, B. Wang, M. Radosz, and M. Fan, ACS Catal. 7, 8285 (2017).
Y.-P. Pei, J.-X. Liu, Y.-H. Zhao, Y.-J. Ding, T. Liu, W.-D. Dong, H.-J. Zhu, H.-Y. Su, L. Yan, J.-L. Li, and W.-X. Li, ACS Catal. 5, 3620 (2015).
L. Joos, I. A. W. Filot, S. Cottenier, E. J. M. Hensen, M. Waroquier, V. van Speybroeck, and R. A. van Santen, J. Phys. Chem. 118, 5317.
P. Zhai, P-P. Chen, J. Xie, J. -X. Liu, H. Zhao, L. Lin, B. Zhao, H.-Y. Su, Q. Zhu, W.-X. Li, and D. Ma, Faraday Discuss. 197, 207 (2017).
M. Valero Corral and P. Raybaud, J. Phys. Chem. 118, 22 479.
M. D. Stroemsheim, I.-H. Svenum, M. H. Farstad, Z. Li, L. Gavrilovic, X. Guo, S. Lervold, A. Borg, and H. J. Venvik, Catal. Today 299, 37 (2018).
X.-C. Xu, J. Su, P. Tian, D. Fu, W. Dai, W. Mao, W.-K. Yuan, J. Xu, and Y.-F. Han, J. Phys. Chem. 119, 216 (2015).
G. Prieto, S. Beijer, M. L. Smith, M. He, Y. Au, Z. Wang, D. A. Bruce, K. P. de Jong, J. J. Spivey, and P. E. de Jongh, Angew. Chem., Int. Ed. Engl. 53, 6397 (2014).
T. van Heerden and E. van Steen, Faraday Discuss. 197, 87 (2017).
P. C. Psarras and D. W. Ball, Comput. Theor. Chem. 1063, 1 (2015).
J. L. C. Fajin, M. N. D. S. Cordeiro, and J. R. B. Gomes, Catalysts 5, 3 (2015).
M. Melander and K. Laasonen, J. Mol. Catal. A: Chem. 406, 31 (2015).
S. Zhao, X.-W. Liu, C.-F. Huo, X.-D. Wen, W. CaoD, Guo, Y. Yang, Y.-W. Li, J. Wang, and H. Jiao, Catal. Today 261, 93 (2016).
M. R. Elahifard, M. P. Jigato, and J. W. Niemantsverdriet, Chem. Phys. Chem. 13, 89 (2012).
S. Amaya-Roncancio, D. H. Linares, K. Sapag, and M. I. Rojas, Appl. Surf. Sci. 346, 438 (2015).
S. Amaya-Roncancio, D. H. Linares, H. A. Duarte, and K. Sapag, J. Phys. Chem. 120, 10830.
J. M. H. Lo and T. Ziegler, J. Phys. Chem. 111, 13149.
J. M. H. Lo and T. Ziegler, J. Phys. Chem. 112, 13681.
H.-J. Li, C.-C. Chang, and J.-J. Ho, J. Phys. Chem. 115, 11045.
S. Booyens, M. Bowker, and D. J. Willock, Surf. Sci. 625, 69 (2014).
D. Borthwick, V. Fiorin, S. J. Jenkins, and D. A. King, Surf. Sci. 602, 2325 (2008).
D.-B. Cao, Y.-W. Li, J. Wang, and H. Jiao, J. Mol. Catal. A: Chem. 346, 55 (2011).
M. O. Ozbek and J. W. Niemantsverdriet, J. Catal. 325, 9 (2015).
T. H. Pham, X. Duan, G. Qian, X. Zhou, and D. Chen, J. Phys. Chem. 118, 10170.
G. Cilpa-Karhu and K. Laasonen, Phys. Chem. Chem. Phys. 20, 2741 (2017).
T. H. Pham, Y. Qi, J. Yang, X. Duan, G. Qian, X. Zhou, D. Chen, and W. Yuan, ACS Catal. 5, 2203 (2015).
D.-B. Cao, F-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Phys. Chem. B 109, 10922.
D.-B. Cao, S.-G. Wang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem. 272, 275 (2007).
L.-J. Deng, C.-F. Huo, X.-W. Liu, X.-H. Zhao, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 114, 21585.
Y. Wang, Y. Li, S. Huang, J. Wang, H. Wang, J. Lv, and X. Ma, Chem. Phys. Lett. 682, 115 (2017).
X. Yu, X. Zhang, Y. Meng, Y. Zhao, Y. Li, W. Xu, Z. Liu, Appl. Surf. Sci. 434, 464 (2018).
C.-M. Deng, C.-F. Huo, L.-L. Bao, G. Feng, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 112, 19018.
C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao, J. Am. Chem. Soc. 131, 14713 (2009).
M. A. Petersen and W. J. van Rensburg, Top. Catal. 58, 665 (2015).
J. G. de la Cruz, M. K. Sabbe, and M.-F. Reyniers, J. Phys. Chem. 121, 25052.
L. Zheng, X. Liu, Y. Meng, Y. Zhou, Y. Yang, H. Jiao, Y.-W. Li, X.-D. Wen, W. Guo, and Q. Peng, Phys. Chem. Chem. Phys. 18, 32944 (2016).
M. A. Petersen, M. J. Cariem, M. Claeys, and E. van Steen, Appl. Catal., A 496, 64 (2015).
M. H. Mahyuddin, R. V. Belosludov, M. Khazaei, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. 115, 23893.
M. R. Elahifard, E. Fazeli, A. Joshani, and M. R. Gholami, Surf. Interface Anal. 45, 1081 (2013).
X. Tian, T. Wang, Y. Yang, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 118, 20472.
W. Wang, Y. Wang, and G.-C. Wang, J. Phys. Chem. 121, 6820.
ACKNOWLEDGMENTS
This work performed at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, was supported by the Russian Science Foundation (project no. 17-73-30046).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by T. Soboleva
Rights and permissions
About this article
Cite this article
Kuzmin, A.E., Kulikova, M.V. & Maximov, A.L. Mechanism of Fischer–Tropsch Synthesis over Nanosized Catalyst Particles: Approaches and Problems of Ab Initio Calculations. Pet. Chem. 59, 485–497 (2019). https://doi.org/10.1134/S0965544119050050
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965544119050050