Advertisement

Petroleum Chemistry

, Volume 59, Issue 1, pp 91–98 | Cite as

Nonoxidative Conversion of Methane to Aromatic Hydrocarbons in the Presence of ZSM-5 Zeolites Modified with Molybdenum and Rhenium

  • A. A. Stepanov
  • V. I. Zaikovskii
  • L. L. Korobitsyna
  • A. V. VosmerikovEmail author
Article
  • 45 Downloads

Abstract

The nonoxidative conversion of methane to aromatic hydrocarbons in the presence of a high-silica ZSM-5 zeolite modified with molybdenum and rhenium nanopowders has been studied. Data on the acid characteristics of the catalysts have been derived by temperature-programmed desorption of ammonia. The microstructure and composition of the Re/ZSM-5 and Re–Mo/ZSM-5 catalyst systems have been studied by transmission electron microscopy. It has been shown that modification of a Mo-containing zeolite with rhenium leads to an increase in the activity and stability of the catalyst in the methane dehydroaromatization reaction.

Keywords:

methane aromatic hydrocarbons natural gas zeolite molybdenum and rhenium nanopowders 

Notes

ACKNOWLEDGMENTS

This work was performed under the Basic Research Program of State Academies of Sciences, project no. V.46.2.1.

REFERENCES

  1. 1.
    Y. Xu and L. Lin, Appl. Catal., A 188, 53 (1999).Google Scholar
  2. 2.
    L. Wang, R. Ohnishi, and M. Ichikawa, J. Catal. 190, 276 (2000).CrossRefGoogle Scholar
  3. 3.
    A. Szoke and F. Solymosi, Appl. Catal., A 142, 361 (1996).Google Scholar
  4. 4.
    R. Kojima, S. Kikuchi, H. T. Ma, et al., Catal. Lett. 110, 15 (2006).CrossRefGoogle Scholar
  5. 5.
    V. Abdelsayed, D. Shekhawat, and M. W. Smith, Fuel 139, 401 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Maihi, P. Mohanty, H. Wang, and K. K. Pant, J. Energy Chem. 22, 543 (2013).CrossRefGoogle Scholar
  7. 7.
    V. I. Bukhtiyarov, V. I. Zaikovskii, A. S. Kashin, and V. P. Ananikov, Usp. Khim. 85, 1198 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Ohnishi and M. Ichikawa, Catal. Surv. Jpn. 5, 103 (2002).CrossRefGoogle Scholar
  9. 9.
    M. A. Ryashentseva and Kh. M. Minachev, Usp. Khim. 38, 2050 (1969).CrossRefGoogle Scholar
  10. 10.
    F. Solymosi, J. Cserenyi, A. Szoke, et al., J. Catal. 165, 150 (1997).CrossRefGoogle Scholar
  11. 11.
    D. Wang, J. H. Lunsford, and M. P. Rosynek, J. Catal. 169, 347 (1997).CrossRefGoogle Scholar
  12. 12.
    S. Liu, L. Wang, R. Ohnishi, and M. Ichikawa, J. Catal. 181, 175 (1999).CrossRefGoogle Scholar
  13. 13.
    R. W. Borry, Y. H. Kim, A. Huffsmith, et al., J. Phys. Chem. B 103, 5787 (1999).CrossRefGoogle Scholar
  14. 14.
    Y. Xu, Y. Shu, S. Liu, et al., Catal. Lett. 35, 233 (1995).CrossRefGoogle Scholar
  15. 15.
    L. Wang, R. Ohnishi, and M. Ichikawa, J. Catal. 190, 276 (2000).CrossRefGoogle Scholar
  16. 16.
    V. I. Zaikovskii, A. V. Vosmerikov, V. F. Anufrienko, et al., Kinet. Catal. 47, 389 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Stepanov
    • 1
  • V. I. Zaikovskii
    • 2
    • 3
  • L. L. Korobitsyna
    • 1
  • A. V. Vosmerikov
    • 1
    Email author
  1. 1.Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations