Advertisement

Petroleum Chemistry

, Volume 59, Issue 1, pp 11–23 | Cite as

Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental Article)

  • A. I. NetrusovEmail author
  • V. V. Teplyakov
  • M. V. Tsodikov
  • A. V. Chistyakov
  • P. A. Zharova
  • M. G. Shalygin
Article
  • 20 Downloads

Abstract

A three-stage process for the production of motor fuel (MT) components from lignocellulosic raw materials is described. In the first, pretreatment stage, lignocellulose is subjected to hydrolysis with cellulases followed by fermentation of the resulting sugars into ethanol; then, dilute ethanol solutions are concentrated by membrane vapor separation to obtain 70–80% solutions. At the third stage, aqueous ethanol solutions (water content 0–50%) in the presence of a Pd–Zn/Al2O3/MFI catalyst at 350°C and a space velocity of 0.6 h−1 are converted into alkanes, and С3–С8 olefins and С6–C12 aromatic compounds (MT components). It has been found that water in an amount of up to 30% in ethanol solutions effectively inhibits the detrimental hydrocarbon cracking and catalyst coking processes, thereby leading to a decrease in the formation of undesirable C1 and C2 products and an increase in the catalyst on-stream time to 100 h wherein the yield of the desired fraction is reduced only by 10–15%. The subsequent treatment of the catalyst surface with steam and hydrogen completely restores its catalytic activity.

Keywords:

bioenergy cellulosic ethanol membrane concentration catalysis zeolites motor fuel 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 16-14-00098. The authors thank RM Nanotech for providing membrane samples.

REFERENCES

  1. 1.
    Q. Kang, L. Appels, T. Tan, and R. Dewil, Sci. World J., Article ID 298153 (2014). http://dx.doi.org/ 1-13.  https://doi.org/10.1155/2014/298153 Google Scholar
  2. 2.
    G. M. Souza, R. L. Victoria, L. M. Verdade, et al., Bioenergy and Sustainability: Bridging and Gaps, Ed. by G. M. Souza , (Scope, Paris, 2015), p. 28.Google Scholar
  3. 3.
    L. M. Fulton, L. R. Lynd, A. Korner, et al., Biofuels Bioprod. Biorefin. 9, 476 (2015).CrossRefGoogle Scholar
  4. 4.
    N. Jordan, G. Boody, W. Broussard, et al., Science 316, 1570 (2007).CrossRefGoogle Scholar
  5. 5.
    B. P. Werling, T. L. Dickson, R. Isaacs, et al., Proc. Natl. Acad. Sci. U.S.A. 111, 1652 (2014).CrossRefGoogle Scholar
  6. 6.
    L. R. Lynd, M. Sow, A. F. Chimphango, et al., Biofuels Biotechnol. 8, 18 (2015).CrossRefGoogle Scholar
  7. 7.
    M. Naqvi and J. Yan, First-Generation Biofuels: Handbook of Clean Energy Systems (Wiley, Hoboken, 2015).CrossRefGoogle Scholar
  8. 8.
    A. Gupta and J. P. Verma, Renew. Sustain. Energy Rev. 41, 550 (2015).CrossRefGoogle Scholar
  9. 9.
    T. Searchinger, R. Edwards, D. Mulligan, et al., Science 347 (6229), 1420 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Enquist-Newman, A. M. E. Faust, D. D. Bravo, et al., Nature 505 (7482), 239 (2014).CrossRefGoogle Scholar
  11. 11.
    L. R. Lynd, X. Liang, M. J. Biddy, et al., Curr. Opin. Biotechnol. 45, 202 (2017).CrossRefGoogle Scholar
  12. 12.
    P.-M. Bondesson and M. Galbe, Biotechnol. Biofuels 9, 222 (2016).CrossRefGoogle Scholar
  13. 13.
    M. Chen, J. Zhao, and L. Xia, Biomass Bioenergy 33, 1381 (2009).CrossRefGoogle Scholar
  14. 14.
    P. Alvira, E. Tomas-Pejo, M. Ballesteros, and M. J. Negro, Bioresour. Technol. 101, 4851 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Galbe and G. Zacchi, Biomass Bioenergy 46, 70 (2012).CrossRefGoogle Scholar
  16. 16.
    X. Meng and A. J. Ragauskas, Curr. Opin. Biotechnol. 27, 150 (2014).CrossRefGoogle Scholar
  17. 17.
    K. Gerbrandt, P. L. Chu, A. Simmonds, et al., Curr. Opin. Biotechnol. 38, 63 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Guilliams, S. Pattathil, D. Willies, et al., Biotechnol. Biofuels 9, 30 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Choi, C. W. Song, J. H. Shin, and S. Y. Lee, Metab. Eng. 28, 223 (2015).CrossRefGoogle Scholar
  20. 20.
    E. Joelsson, B. Erdei, M. Galbe, and O. Wallberg, Biotechnol Biofuels 9, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    V. Mukherjee, J. Steensels, B. Lievens, et al., Appl. Microbiol. Biotechnol. 98, 9483 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Nielsen and J. D. Keasling, Cell 164, 1185 (2016).CrossRefGoogle Scholar
  23. 23.
    R. Ledesma-Amaro and J. M. Nicaud, Trends Biotechnol. 34, 798 (2016).CrossRefGoogle Scholar
  24. 24.
    L. M. Vane, Biofuels Bioprod. Biorefin. 2, 553 (2008).CrossRefGoogle Scholar
  25. 25.
    T. Ezeji, C. Milne, and N. D. Price, Appl. Microbiol. Biotechnol. 85, 1697 (2010).CrossRefGoogle Scholar
  26. 26.
    A. G. Fadeev, Ya. A. Selinskaya, S. S. Kelley, et al., J. Membr. Sci. 186, 205 (2001).CrossRefGoogle Scholar
  27. 27.
    V. V. Teplyakov, V. S. Khotimskii, A. V. Yakovlev, et al., Catal. Ind. 3, 62 (2011).CrossRefGoogle Scholar
  28. 28.
    L. M. Vane and F. R. Alvarez, J. Chem. Technol. Biotechnol. 88, 1436 (2013).CrossRefGoogle Scholar
  29. 29.
    L. M. Vane, F. R. Alvarez, L. Rosenblum, and Sh. Govindaswamy, J. Chem. Technol. Biotechnol. 88, 1448 (2013).CrossRefGoogle Scholar
  30. 30.
    P. Pierrot, M. Fick, and J. M. Engasser, Biotechnol. Lett. 8, 253 (1986).CrossRefGoogle Scholar
  31. 31.
    L. M. Vane, J. Chem. Technol. Biotechnol. 80, 603 (2005).CrossRefGoogle Scholar
  32. 32.
    B. Freeman, Y. Yampolskii, and I. Pinnau, Materials Science of Membranes for Gas and Vapor Separation (Wiley, Chichester, 2006).Google Scholar
  33. 33.
    R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2012).CrossRefGoogle Scholar
  34. 34.
    S. Sommer and Th. Melin, Chem. Eng. Sci. 60, 4509 (2005).CrossRefGoogle Scholar
  35. 35.
    S. Sommer and Th. Melin, Chem. Eng. Sci. 60, 4525 (2005).CrossRefGoogle Scholar
  36. 36.
    H. Zhou, Y. Su, X. Chen, and Y. Wan, Sep. Purif. Technol. 79, 3375 (2011).CrossRefGoogle Scholar
  37. 37.
    K. K. Sirkar, Ind. Eng. Chem. Res. 47, 5250 (2008).CrossRefGoogle Scholar
  38. 38.
    W. Kujawski, Polish J. Environ. Stud. 9, 13 (2000).Google Scholar
  39. 39.
    K. Neubauer, R. Dragomirova, M. Stohr, et al., J. Membr. Sci. 453, 100 (2014).CrossRefGoogle Scholar
  40. 40.
    A. V. Yakovlev, M. G. Shalygin, S. M. Matson, et al., J. Membr. Sci. 434, 99 (2013).CrossRefGoogle Scholar
  41. 41.
    V. V. Teplyakov and M. G. Shalygin, Pervaporation, Vapor Permeation and Membrane Distillation: Principles and Applications, Ed. by A. Basile, A. Figoli, and M. Khayet (Elsevier, Amsterdam, 2015), p. 177.Google Scholar
  42. 42.
    O. B. Borisevich, D. A. Syrtsova, V. V. Teplyakov, et al., Desalination 163, 267 (2004).CrossRefGoogle Scholar
  43. 43.
    J. A. Gonsalez-Marcos, C. Lopez-Dehesa, and J. R. Gonsalez-Velasco, J. App. Polym. Sci. 94, 1395 (2004).Google Scholar
  44. 44.
    V. V. Teplyakov, V. S. Khotimsky, M. Matson, et al., RU Patent No. 2248341 (2016).Google Scholar
  45. 45.
    Yu. P. Yampol’skii and V. V. Volkov, J. Membr. Sci. 64, 191 (1991).CrossRefGoogle Scholar
  46. 46.
    A. T. Aguayo, A. G. Gayubo, A. Atutxa, et al., Ind. Eng. Chem. Res. 41, 4216 (2002).CrossRefGoogle Scholar
  47. 47.
    M. V. Tsodikov, F. A. Yandieva, V. Ya. Kugel, et al., Catal. Lett. 121, 199 (2008).CrossRefGoogle Scholar
  48. 48.
    R. Johansson, S. L. Hruby, J. Rass-Hansen, and C. H. Christensen, Catal. Lett. 127, 1 (2009).CrossRefGoogle Scholar
  49. 49.
    K. Inoue, M. Inaba, I. Takahara, and K. Murata, Catal. Lett. 136, 14 (2010).CrossRefGoogle Scholar
  50. 50.
    M. V. Tsodikov, A. V. Chistyakov, and A. I. Netrusov, Catalytic Valorization of Biomass into Fuel Components and Chemicals. (Lambert Academic, Saarbrucken, 2017).Google Scholar
  51. 51.
    S. A. Nikolaev, A. V. Chistyakov, M. V. Chudakova, et al., J. Catal. 297, 296 (2013).CrossRefGoogle Scholar
  52. 52.
    A. V. Chistyakov, V. Yu. Murzin, M. A. Gubanov, and M. V. Tsodikov, Chem. Eng. Trans. 32, 619 (2013).Google Scholar
  53. 53.
    F. A. Yandieva, M. V. Tsodikov, I. I. Moiseev, and A. E. Gekhman, Russ. Chem. Bull. 61, 1669 (2012).CrossRefGoogle Scholar
  54. 54.
    P. Zharova, A. Chistyakov, M. Tsodikov, et al., Chem. Eng. Transact 43, 415 (2015).Google Scholar
  55. 55.
    A. Chistyakov, M. Gubanov, P. Zharova, and M. Tsodikov, Chem. Eng. Trans. 37, 547 (2014).Google Scholar
  56. 56.
    E. G. Derouane, J. B. Nagy, P. Dejaifve, et al., J. Catal. 53, 40 (1978).CrossRefGoogle Scholar
  57. 57.
    C. W. Ingram and R. J. Lancashire, Catal. Lett. 31, 395 (1995).CrossRefGoogle Scholar
  58. 58.
    Y. Ni and Z. Sun, Appl. Microbiol. Biotechnol. 83, 415 (2009).CrossRefGoogle Scholar
  59. 59.
    E. Green, Curr. Opin. Biotechnol. 22, 337 (2011).CrossRefGoogle Scholar
  60. 60.
    J. C. Oudejans, P. F. van den Oosterkam., and H. van Bekkum, Appl. Catal., A 3, 109 (1982).Google Scholar
  61. 61.
    J. Schulz and F. Bandermann, Chem. Eng. Technol. 17, 179 (1994).CrossRefGoogle Scholar
  62. 62.
    A. K. Talukdar, K. G. Bhattacharyya, and S. Sivasanker, Appl. Catal., A 148, 357 (1997).Google Scholar
  63. 63.
    S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2442767 (2010).Google Scholar
  64. 64.
    N. V. Kolesnichenko, Z. M. Bukina, L. E. Kitaev, et al., Pet. Chem. 56, 829 (2016).Google Scholar
  65. 65.
    K. Zhang, S. A. Kurumov, X. Su, et al., Pet. Chem. 57, 1036 (2017).CrossRefGoogle Scholar
  66. 66.
    M. Seiler, W. Wang, A. Buchholz, and M. Hunger, Catal. Lett. 88, 187 (2003).CrossRefGoogle Scholar
  67. 67.
    F. A. Yandieva, M. V. Tsodikov, A. V. Chistyakov, et al., Kinet. Catal. 51, 548 (2010).CrossRefGoogle Scholar
  68. 68.
    A. V. Chistyakov, M. V. Tsodikov, M. V. Chudakova, et al., Pet. Chem. 58, 32 (2018).CrossRefGoogle Scholar
  69. 69.
    V. V. Yushchenko and B. V. Romanovsky, J. Phys. Chem. 71, 2048 (1997).Google Scholar
  70. 70.
    A. A. Kubasov, L. E. Kitaev, V. V. Yuschenko, and Ya. V. Tikhiy, Moscow Univ. Chem. Bull. 46, 236 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Netrusov
    • 1
    • 2
    Email author
  • V. V. Teplyakov
    • 1
    • 2
  • M. V. Tsodikov
    • 2
  • A. V. Chistyakov
    • 1
    • 2
  • P. A. Zharova
    • 1
    • 2
  • M. G. Shalygin
    • 1
    • 2
  1. 1.Department of Microbiology, Faculty of Biology, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations