Petroleum Chemistry

, Volume 59, Issue 1, pp 111–119 | Cite as

Effect of the Method of Synthesizing a Nickel-Containing Catalyst on Lignin Conversion in Liquid-Phase Hydrodepolymerization

  • O. V. ArapovaEmail author
  • O. G. Ellert
  • R. S. Borisov
  • A. V. Chistyakov
  • A. Yu. Vasil’kov
  • M. V. Tsodikov
  • A. E. Gekhman


Results of the catalytic hydrogenation of lignin in a hydrogen-donor solvent medium are described. Nickel-containing systems are deposited directly on the lignin surface in an amount of 1.5–3.4 wt %. Nickel systems are deposited by two methods: from a Ni(OAc)2 × 4Н2О aqueous solution and from a colloidal solution in toluene of nickel particles prepared by metal vapor synthesis (MVS). The hydrogen donor solvent is tetralin taken in a tetralin/lignin ratio of 1 : 1. Hydrogenation was carried out in a rotating autoclave at a temperature of 400°C and a pressure of 100 atm. It is shown that the preactivation of nickel-containing lignin by ultrasonication at 39 kHz for 20 min leads to an almost exhaustive conversion of the organic matter: the hydrogenation products comprise 13.1 wt % gas and 86.3 wt % liquid hydrocarbons. The liquid hydrogenation products contain aromatic hydrocarbons and nonvolatile condensed compounds with an average molecular weight of 300 Da. The effect of sonication on nickel-containing lignin and the evolution of nickel-containing components during lignin hydrodepolymerization are studied by electron microscopy and magnetic susceptibility methods.


lignin hydrogenation conversion ultrasonic activation hydrodepolymerization 



The authors thank S.A. Nikolaev for discussing the TEM results.

This work was performed under the state task to Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences. Magnetic measurements were carried out under the state task using the equipment of the Center for collective use at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.


  1. 1.
    A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).Google Scholar
  2. 2.
    I. I. Moiseev, Theor. Exp. Chem. 46, 371 (2011).CrossRefGoogle Scholar
  3. 3.
    C. N. Hamelink, G. van Hooijdonk, and A. P. C. Faaij, Biomass Bioenergy 28, 384 (2005).CrossRefGoogle Scholar
  4. 4.
    N. Smolarski, High-Value Opportunities for Lignin: Unlocking Its Potential (Frost & Sullivan, Paris, 2012).Google Scholar
  5. 5.
    Y. Sun and J. Cheng, Bioresour. Technol. 83, 1 (2002).CrossRefGoogle Scholar
  6. 6.
    A. S. Klett, P. V. Chappell, and M. C. Thies, Chem. Commun. 51, 12855 (2015).CrossRefGoogle Scholar
  7. 7.
    D. M. Alonso, C. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).CrossRefGoogle Scholar
  8. 8.
    M. A. Rubio Rodrígez, J. De Ruick, P. Roque Díaz, et al., Appl. Energy 88, 630 (2011).CrossRefGoogle Scholar
  9. 9.
    C.-H. Zhou, X. Xia, C.-X. Lin, and D. Shen, Chem. Soc. Rev. 40, 5588 (2011).CrossRefGoogle Scholar
  10. 10.
    Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Ed. by M. Crocker (Royal Society of Chemistry, Cambridge, 2010).Google Scholar
  11. 11.
    R. M. Ravenelle, J. R. Copeland, W.-G. Kim, et al., ACS Catal. 1, 552 (2011).CrossRefGoogle Scholar
  12. 12.
    R. Y. Nsimba, C. A. Mullen, N. M. West, and A. A. Boateng, ACS Sustainable Chem. Eng. 1, 260 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Constant, M. Robitzer, F. Quignard, and F. Di Renzo, Catal. Today, 189, 123 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Phongpreecha, N. C. Hool, R. J. Stoklosa, et al., Green Chem. 19, 5131 (2017).CrossRefGoogle Scholar
  15. 15.
    R. J. Stoklosa and D. B. Hodge, Bioenergy Res. 8, 1224 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Toledano, L. Serrano, A. Garcia, et al., Chem. Eng. J. 157, 93 (2010).CrossRefGoogle Scholar
  17. 17.
    S. I. Mussatto, M. Fernandes, and I. C. Roberto, Carbohydr. Res., 70, 218 (2007).CrossRefGoogle Scholar
  18. 18.
    P. R. Patwardhan, R. C. Brown, and B. H. Shanks, ChemSusChem. 4, 1629 (2011).CrossRefGoogle Scholar
  19. 19.
    A. Aho, N. Kumar, K. Eränen, et al., Trans. IchemE, Part B 85, 473 (2007).Google Scholar
  20. 20.
    P. Ferrini and R. Rinaldi, Angew. Chem. 53, 8634 (2014).CrossRefGoogle Scholar
  21. 21.
    S. F. Koelewijn, A. Dewaele, T. Ennaert, et al., Green Chem. 17, 5035 (2015).CrossRefGoogle Scholar
  22. 22.
    S. van den Bosch, W. Schutyser, S. F. Koelewijn, et al., Chem. Commun. 51, 13158 (2015).CrossRefGoogle Scholar
  23. 23.
    J. Xu, J. Jiang, C. Hse, and T. F. Shupe, Green Chem. 14, 2821 (2012).CrossRefGoogle Scholar
  24. 24.
    J. Xie, J. Qi, C. Hse, and T. F. Shupe, J. Forest Res. 26, 261 (2015).CrossRefGoogle Scholar
  25. 25.
    M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, et al., Chem. Eng. J. 309, 628 (2017).CrossRefGoogle Scholar
  26. 26.
    M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, et al., J. Nanopart. Res. 3, 86 (2018).CrossRefGoogle Scholar
  27. 27.
    R. M. Ravenelle, J. R. Copeland, A. H. van Pelt, et al., Top. Catal. 55, 162 (2012).CrossRefGoogle Scholar
  28. 28.
    H. Ben and A. J. Ragauskas, ACS Sustainable Chem. Eng. 1, 316 (2013).CrossRefGoogle Scholar
  29. 29.
    M. V. Tsodikov, M. A. Perederii, and M. M. Grozhan, Khim. Tverd. Topl., No. 1, 49 (1990).Google Scholar
  30. 30.
    M. V. Tsodikov, Yu. V. Maksimov, G. A. Teplyakova, et al., Khim. Tverd. Topl., No. 3, 92 (1992).Google Scholar
  31. 31.
    M. V. Tsodikov, M. V. Chudakova, A. V. Chistyakov, and Yu. V. Maksimov, Pet. Chem. 53, 367 (2013).CrossRefGoogle Scholar
  32. 32.
    G. V. Rodicheva, V. P. Orlovskii, N. M. Romanova, et al., Russ. J. Inorg. Chem. 41, 728 (1996).Google Scholar
  33. 33.
    M. S. Rubina, A. A. Kamitov, Ya. V. Zubavichus, et al., Appl. Surf. Sci. 366, 365 (2016).CrossRefGoogle Scholar
  34. 34.
    A. Yu. Vasil’kov, D. A. Migulin, A. V. Naumkin, et al., Mendeleev Commun. 26, 187 (2016).CrossRefGoogle Scholar
  35. 35.
    S. A. Nikolaev, A. V. Chistyakov, M. V. Chudakova, et al., J. Catal. 297, 296 (2013).CrossRefGoogle Scholar
  36. 36.
    S. A. Nikolaev, N. A. Permyakov, V. V. Smirnov, et al., Kinet. Catal. 51, 288 (2010).CrossRefGoogle Scholar
  37. 37.
    S. Nikolaev, D. Pichugina, and D. F. Mukhamedzya-nova, Gold Bull. 45, 221 (2012).CrossRefGoogle Scholar
  38. 38.
    T. Phongpreecha, N. C. Hool, R. J. Stoklosa, et al., Green Chem. 19, 5131 (2017).CrossRefGoogle Scholar
  39. 39.
    O. V. Arapova, G. N. Bondarenko, A. V. Chistyakov, and M. V. Tsodikov, Russ. J. Phys. Chem. A 91, 1717 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. V. Arapova
    • 1
    Email author
  • O. G. Ellert
    • 2
  • R. S. Borisov
    • 1
  • A. V. Chistyakov
    • 1
  • A. Yu. Vasil’kov
    • 3
  • M. V. Tsodikov
    • 1
  • A. E. Gekhman
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia

Personalised recommendations