Petroleum Chemistry

, Volume 58, Issue 14, pp 1198–1205 | Cite as

Trimetallic Hydrotreating Catalysts CoMoW/Al2O3 and NiMoW/Al2O3 Prepared on the Basis of Mixed Mo-W Heteropolyacid: Difference in Synergistic Effects

  • A. V. Mozhaev
  • M. S. Nikul’shina
  • C. Lancelot
  • P. Blanchard
  • C. Lamonier
  • P. A. Nikul’shinEmail author


Trimetallic CoMo3W9/Al2O3 catalyst is prepared using the Keggin structure mixed heteropolyacid H4SiMo3W9O40 and cobalt citrate. CoMo12/Al2O3 and CoW12/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, are synthesized as reference samples. Sulfided catalysts are analyzed by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties are investigated in the co-hydrotreatment of dibenzothiophene (DBT) and naphthalene in a flow unit. It is shown that the catalytic activity in both DBT hydrodesulfurization and naphthalene hydrogenation (HYD) decreases in the following sequence: CoMo12/Al2O3 > CoMo3W9/Al2O3 > CoW12/Al2O3, and it correlates with the degree of promotion of active-phase particles by cobalt atoms. A comparison with the published data available for Ni-promoted catalysts makes it possible to reveal the general regularity for bi- and trimetallic Со(Ni)-Mo(W)S catalysts: the use of mixed Mo-W H4SiMo3W9O40 heteropolyacid instead of monometallic H4SiW12O40 causes an increase in the degree of promotion of MoWS2 crystallite edges for the series of catalysts promoted by both cobalt and nickel. The use of nickel as a promoter leads to a higher degree of promotion of edges of active-phase particles in comparison with cobalt; as a result, the NiMo3W9/Al2O3 catalyst is much more active than the CoMo3W9/Al2O3 counterpart. Possible reasons behind the found features are discussed.


hydrotreating CoMoWS NiMoWS dibenzothiophene naphthalene 



This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 14.586.21.0054 (unique project identifier RFMEFI58617X0054). This work was carried out using equipment of the Center for Collective Use Study of Physicochemical Properties of Substances and Materials, Samara State Technical University.


  1. 1.
    M. S. Nikul’shina, A. V. Mozhaev, P. P. Minaev, M. Fournier, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, and P. A. Nikul’shin P.A., Zh. Prikl. Khim. (S.–Peterburg), No. 90, 40 (2017).Google Scholar
  2. 2.
    A. Stanislaus, A. Marafi, and M. Rana, Catal. Today 153, 1 (2010).CrossRefGoogle Scholar
  3. 3.
    Y. Okamoto, Bull. Chem. Soc. Jpn. 87, 20 (2014).CrossRefGoogle Scholar
  4. 4.
    H. Topsoe, B. S. Clausen, N. Topsoe, and E. Pederson, Ind. Eng. Chem. Fundam. 25, 25 (1986).CrossRefGoogle Scholar
  5. 5.
    Y. G. Hur, M.-S. Kim, D.-W. Lee, S. Kim, H.-J. Eom, G. Jeong, M.-H. No, N. S. Nho, and K.-Y. Lee, Fuel 137, 237 (2014).CrossRefGoogle Scholar
  6. 6.
    J. A. Tavizon-Pozos, V. A. Suarez-Toriello, J. A. Reyes, A. Guevara-Lara, B. Pawelec, J. L. G. Fierro, M. Vrinat, and C. Geantet, Topics in Catal. 59, 241 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Alphazan, A. Bonduelle-Skrzypczak, C. Legens, Z. Boudene, A.-L. Taleb, A. -S. Gay, O. Ersen, C. Coperet, and P. Raybaud, J. Catal. 340, 60 (2016).CrossRefGoogle Scholar
  8. 8.
    D. D. Whitehurst, T. Isoda, and I. Mochida, Adv. Catal. 42, 345 (1998).Google Scholar
  9. 9.
    R. Prins, V. H. J. de Beer, and G. A. Somorjai, Catal. Rev., Sci. Eng. 31, 1 (1989).CrossRefGoogle Scholar
  10. 10.
    S. Eijsbouts, Appl. Catal., A 158, 53 (1997).Google Scholar
  11. 11.
    Y. Okamoto, M. Kawano, T. Kawabata, T. Kubota, and I. Hiromitsu, J. Phys. Chem. B 109, 288 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    F. Besenbacher, M. Brorson, B. S. Clausen, S. Helveg, B. Hinnemann, J. Kibsgaard, J. V. Lauritsen, P. G. Moses, J. K. Norskov, and H. Topsoe, Catal. Today 130, 86 (2008).CrossRefGoogle Scholar
  13. 13.
    M. J. Vissenberg, Y. van der Meer, E. J. M. Hensen, V. H. J. de Beer, A. M. van der Kraan, R. A. van Santen, and J. A. R. van Veen, J. Catal. 198, 151 (2001).CrossRefGoogle Scholar
  14. 14.
    L. Coulier, G. Kishan, J. A. R. van Veen, and J. W. Niemantsverdriet, J. Phys. Chem. B 106, 5897 (2002).CrossRefGoogle Scholar
  15. 15.
    R. Obeso-Estrella, J. L. G. Fierro, J. N. Diaz De Leon, S. Fuentes, G. Alonso-Nunez, E. Lugo-Medina, B. Pawelec., and T. A. Zepeda, Fuel 233, 644 (2018).CrossRefGoogle Scholar
  16. 16.
    R. Huirache-Acuna, B. Pawelec, E. M. Rivera-Munoz, R. Guil-Lopez, and J. L. G. Fierro, Fuel 198, 145 (2017).CrossRefGoogle Scholar
  17. 17.
    Y. E. Licea, R. Grau-Crespo, L. A. Palacio, and Jr. A. C. Faro, Catal. Today 292, 84 (2017).CrossRefGoogle Scholar
  18. 18.
    G. Kishan, L. Coulier, J. A. R. van Veen, and J. W. Niemantsverdriet, J. Catal. 200, 194 (2001).CrossRefGoogle Scholar
  19. 19.
    N. Rinaldi, T. Kubota, and Y. Okamoto, Appl. Catal., A 374, 228 (2010).Google Scholar
  20. 20.
    V. M. Kogan, P. A. Nikul’shin, V. S. Dorokhov, E. A. Permyakov, A. V. Mozhaev, D. I. Ishutenko, O. L. Eliseev, N. N. Rozhdestvenskaya, and A. L. Lapidus, Izv. Akad. Nauk, Ser. Khim., No. 2, 332 (2014).Google Scholar
  21. 21.
    J. A. Mendoza-Nieto, O. Vera-Vallejo, L. Escobar-Alarcon, D. A. Solis-Casados, and T. Klimova, Fuel 110, 268 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Sigurdson, V. Sundaramurthy, A. K. Dalai, and J. Adjaye, J. Mol. Catal. A: Chemical 291, 30 (2008).CrossRefGoogle Scholar
  23. 23.
    C. Tomazeau, C. Geantet, M. Lacroix, M. Danot, V. Harle, and P. Raybaud, Appl. Catal., A 322, 92 (2007).Google Scholar
  24. 24.
    H. Yu, S. Li, and G. Jin, Energy Fuels 24, 4419 (2010).CrossRefGoogle Scholar
  25. 25.
    D. Liu, L. Liu, G. Li, and C. Liu, J. Nat. Gas Chem. 19, 530 (2010).CrossRefGoogle Scholar
  26. 26.
    R. Huirache-Acuna, B. Pawelec, E. Rivera-Munoz, R. Nava, J. Espino, and J. L. G. Fierro, Appl. Catal., B 92, 168 (2009).CrossRefGoogle Scholar
  27. 27.
    M. E. Cervantes-Gaxiola, M. Arroyo-Albiter, A. Perez-Larios, P. B. Balbuena, and J. Espino-Valencia, Fuel 113, 733 (2013).CrossRefGoogle Scholar
  28. 28.
    M. S. Nikul’shina, A. V. Mozhaev, P. P. Minaev, M. Fournier, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, and P. A. Nikul’shin, Kinet. Katal., No. 6, 789 (2017).Google Scholar
  29. 29.
    M. S. Nikulshina, A. Mozhaev, C. Lancelot, M. Marinova, P. Blanchard, E. Payen, C. Lamonier, and P. Nikulshin, Appl. Catal., B 224, 951 (2018).CrossRefGoogle Scholar
  30. 30.
    S. L. Amaya, G. Alonso-Nunez, T. A. Zepeda, S. Fuentes, and A. Echavarria, Appl. Catal., B 148–149, 221 (2014).Google Scholar
  31. 31.
    R. Huirache-Acuna, T. A. Zepeda, E. M. Rivera-Munoz, R. Nava, C. V. Loricera, and B. Pawelec, Fuel 149, 149 (2015).CrossRefGoogle Scholar
  32. 32.
    C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot, Inorg. Chem. 22, 207 (1983).CrossRefGoogle Scholar
  33. 33.
    G. Herv and A. Teze, Inorg. Chem. 16, 2115 (1977).CrossRefGoogle Scholar
  34. 34.
    C. Sanchez, J. Livage, J. P. Launay, M. Fournier, and Y. Jeannin, J. Am. Chem. Soc. 104, 3194 (1982).CrossRefGoogle Scholar
  35. 35.
    A. V. Mozhaev, P. A. Nikulshin, Al. A. Pimerzin, K. I. Maslakov, and A. A. Pimerzin, Catal. Today 271, 80 (2016).CrossRefGoogle Scholar
  36. 36.
    P. A. Nikulshin, A. V. Mozhaev, K. I. Maslakov, A. A. Pimerzin, and V. M. Kogan, Appl. Catal., B 158–159, 161 (2014).Google Scholar
  37. 37.
    P. P. Minaev, P. A. Nikulshin, M. S. Kulikova, A. A. Pimerzin, and V. M. Kogan, Appl. Catal., A 505, 456 (2015).Google Scholar
  38. 38.
    S. Kasztelan, H. Toulhoat, J. Grimblot, and J. P. Bonnelle, Appl. Catal. 13, 1279 (1984)CrossRefGoogle Scholar
  39. 39.
    H. Toulhoat and P. Raybaud, IFP Energies nouvelles 68, 832 (2013).Google Scholar
  40. 40.
    T. Kubota, N. Miyamoto, M. Yoshioka, and Y. Okamoto, Appl. Catal., A 480, 10 (2014).Google Scholar
  41. 41.
    M. Sun, A. E. Nelson, and J. Adjaye, J. Catal. 226, 41 (2004).CrossRefGoogle Scholar
  42. 42.
    H. Schweiger, P. Raybaud, and H. Toulhoat, J. Catal. 212, 33 (2002).CrossRefGoogle Scholar
  43. 43.
    M. Sun, A. E. Nelson, and J. Adjaye, J. Catal. 226, 32 (2004).CrossRefGoogle Scholar
  44. 44.
    D. Wyrzykoiwski and L. Chmuirzynski, J. Therm. Anal. Calorim. 102, 61 (2010). J. Therm. Anal. Calorim.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Mozhaev
    • 1
  • M. S. Nikul’shina
    • 1
    • 2
  • C. Lancelot
    • 2
  • P. Blanchard
    • 2
  • C. Lamonier
    • 2
  • P. A. Nikul’shin
    • 1
    • 3
    Email author
  1. 1.Samara State Technical UniversitySamaraRussia
  2. 2.Université Lille1, UCCS, Cité ScientifiqueVilleneuve d’AscqFrance
  3. 3.All-Russia Research Institute of Oil RefiningMoscowRussia

Personalised recommendations