Computer Simulation of Asphaltenes

Abstract

The review describes theoretical approaches based on computer simulations at various levels of details (from quantum chemical calculations to atomistic and coarse-grained models) to study asphaltenes and systems containing asphaltenes. The used methods are described, their advantages and disadvantages are discussed in terms of computational costs and time- and spatial-scales available for simulations. The results of studies of the asphaltenes interactions with each other and their aggregation behavior in low-molecular solvents are presented. The most promising approaches of computer simulations of asphaltenes-based systems are determined.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

REFERENCES

  1. 1

    B. Schuler, G. Meyer, D. Pena, et al., J. Am. Chem. Soc. 137, 9870 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    O. C. Mullins, Annu. Rev. Anal. Chem 4, 393 (2011).

    Article  CAS  Google Scholar 

  3. 3

    L. V. Melendez, A. Lache, J. A. Orrego-Ruiz, et al., J. Pet. Sci. Eng. 90–91, 56 (2012).

    Article  CAS  Google Scholar 

  4. 4

    S. O. Ilyin, M. P. Arinina, M. Y. Polyakova, et al., Fuel 186, 157 (2016).

    Article  CAS  Google Scholar 

  5. 5

    C. V. B. Fávero, T. Maqbool, M. Hoepfner, et al., Adv. Colloid Interface Sci. 244, 267 (2017).

    Article  CAS  Google Scholar 

  6. 6

    E. Rogel, C. Ovalles, and M. Moir, Energy Fuels 24, 4369 (2010).

    Article  CAS  Google Scholar 

  7. 7

    F. Rakotondradany, H. Fenniri, P. Rahimi, et al., Energy Fuels 20, 2439 (2006).

    Article  CAS  Google Scholar 

  8. 8

    O. C. Mullins, H. Sabbah, J. Eyssautier, et al., Energy Fuels 26, 3986 (2012).

    Article  CAS  Google Scholar 

  9. 9

    S. K. Kumar and R. Krishnamoorti, Annu. Rev. Chem. Biomol. 1, 37 (2010).

    Article  CAS  Google Scholar 

  10. 10

    L. Gonzalez, P. Lafleur, T. Lozano, et al., Polym. Composite 35, 1 (2014).

    Article  CAS  Google Scholar 

  11. 11

    P. G. Allison, R. D. Moser, M. Q. Chandler, et al., J. Nanomater. 16, 135 (2015).

    Google Scholar 

  12. 12

    M. Bhattacharya, Materials 9, 262 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  13. 13

    H. Zou, S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    K. I. Winey and R. A. Vaia, MRS Bull. 32, 314 (2007).

    Article  CAS  Google Scholar 

  15. 15

    http://www.sigmaaldrich.com.

  16. 16

    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297 (5582), 787 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    S. G. Falkovich, V. M. Nazarychev, S. V. Larin, et al., J. Phys. Chem. C 120, 6771 (2016).

    Article  CAS  Google Scholar 

  18. 18

    S. G. Falkovich, S. V. Larin, A. V. Lyulin, et al., RSC Adv. 4, 48 606 (2014).

    Article  CAS  Google Scholar 

  19. 19

    M. N. Siddiqui, Macromol. Symp. 354, 184 (2015).

    Article  CAS  Google Scholar 

  20. 20

    M. N. Siddiqui, Polym. Composite 38, 1957 (2015).

    Article  CAS  Google Scholar 

  21. 21

    H. Wu, V. K. Thakur, and M. R. Kessler, J. Mater. Sci. 51, 2394 (2016).

    Article  CAS  Google Scholar 

  22. 22

    H. Wu and M. R. Kessler, RSC Adv. 5, 24 264 (2015).

  23. 23

    T. F. Headen, E. S. Boek, and N. T. Skipper, Energy Fuels 23, 1220 (2009).

    Article  CAS  Google Scholar 

  24. 24

    F. Alvarez-Ramirez and Y. Ruiz-Morales, Energy Fuels 27, 1791 (2013).

    Article  CAS  Google Scholar 

  25. 25

    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007), 2nd Ed.

    Google Scholar 

  26. 26

    D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Wiley, New York, 2004).

    Google Scholar 

  27. 27

    V. Fock, Z. Phys. 61, 126 (1930).

    Article  Google Scholar 

  28. 28

    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  29. 29

    D. D. Li and M. L. Greenfield, Energy Fuels 25, 3698 (2011).

    Article  CAS  Google Scholar 

  30. 30

    H. Wang, H. Xu, W. Jia, et al., Energy Fuels 31, 2488 (2017).

    Article  CAS  Google Scholar 

  31. 31

    R. Hernández-Bravo, A. D. Miranda, O. Martínez-Mora, et al., Ind. Eng. Chem. Res. 56, 5107 (2017).

    Article  CAS  Google Scholar 

  32. 32

    N. K. Jena, Å. L. Lyne, N. Arul Murugan, et al., Mater. Struct. 50, 99 (2017).

    Article  CAS  Google Scholar 

  33. 33

    A. Torres, J. Amaya Suárez, E. R. Remesal, et al., J. Phys. Chem. B 122, 618 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    E. Rogel, Colloid. Surf. A 104, 85 (1995).

    Article  CAS  Google Scholar 

  35. 35

    A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, 799 (1993).

    Article  Google Scholar 

  36. 36

    A. Klamt, J. Phys. Chem. 99, 2224 (1995).

    Article  CAS  Google Scholar 

  37. 37

    V. M. Nazarychev, S. V. Larin, A. V. Yakimansky, et al., J. Polym. Sci., Part B: Polym. Phys. 53 (13), 912 (2015).

    Article  CAS  Google Scholar 

  38. 38

    N. V. Lukasheva, D. A. Tolmachev, V. M. Nazarychev, et al., Soft Matter 13, 474 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    N. I. Borzdun, S. V. Larin, S. G. Falkovich, et al., J. Polym. Sci., Part B: Polym. Phys. 54, 2448 (2016).

    Article  CAS  Google Scholar 

  40. 40

    J. Murgich, Pet. Sci. Technol. 20, 983 (2002).

    Article  CAS  Google Scholar 

  41. 41

    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education, Harlow, 2001), 2nd Ed.

    Google Scholar 

  42. 42

    C. A. Lemarchand, M. L. Greenfield, and J. S. Hansen, J. Phys. Chem. B 120, 5470 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    M. Sedghi, L. Goual, W. Welch, and J. Kubelka, J. Phys. Chem. B 117, 5765 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    F. Yang, P. Tchoukov, H. Dettman, et al., Energy Fuels 29, 4783 (2015).

    Article  CAS  Google Scholar 

  45. 45

    T. Kuznicki, J. H. Masliyah, and S. Bhattacharjee, Energy Fuels 23, 5027 (2009).

    Article  CAS  Google Scholar 

  46. 46

    R. B. Teklebrhan, L. Ge, S. Bhattacharjee, et al., J. Phys. Chem. B 118, 1040 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    R. B. Teklebrhan, L. Ge, S. Bhattacharjee, et al., J. Phys. Chem. B 116, 5907 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    T. F. Headen, E. S. Boek, G. Jackson, et al., Energy Fuels 31, 1108 (2017).

    Article  CAS  Google Scholar 

  49. 49

    P. Ungerer, D. Rigby, B. Leblanc, and M. Yiannourakou, Mol. Simul. 40, 115 (2014).

    Article  CAS  Google Scholar 

  50. 50

    D. D. Li and M. L. Greenfield, J. Chem. Phys. 140, 034 507 (2014).

    Article  CAS  Google Scholar 

  51. 51

    J. Liu, Y. Zhao, and S. Ren, Energy Fuels 29, 1233 (2015).

    Article  CAS  Google Scholar 

  52. 52

    X. Zhu, D. Chen, and G. Wu, Chemosphere 138, 412 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    G. Lv, G. Fengfeng, F. Gao, et al., Colloid Surf. A 515, 34 (2017).

    Article  CAS  Google Scholar 

  54. 54

    P. Venkataraman, K. Zygourakis, W. G. Chapman, et al., Energy Fuels 31, 1182 (2017).

    Article  CAS  Google Scholar 

  55. 55

    L. Liu, R. Zhang, X. Wang, et al., Energy Fuels 31, 3465 (2017).

    Article  CAS  Google Scholar 

  56. 56

    Y. Xiong, T. Cao, Q. Chen, et al., J. Phys. Chem. C 121, 5020 (2017).

    Article  CAS  Google Scholar 

  57. 57

    E. Lowry, M. Sedghi, and L. Goual, J. Mol. Liq. 230, 589 (2017).

    Article  CAS  Google Scholar 

  58. 58

    Z. Dong, Z. Liu, P. Wang, and X. Gong, Fuel 189, 155 (2017).

    Article  CAS  Google Scholar 

  59. 59

    J. S. Hansen, C. A. Lemarchand, E. Nielsen, et al., J. Chem. Phys. 138, 094 508 (2013).

    Article  CAS  Google Scholar 

  60. 60

    S. V. Lyulin, A. A. Gurtovenko, S. V. Larin, et al., Macromolecules 46, 6357 (2013).

    Article  CAS  Google Scholar 

  61. 61

    S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, et al., Soft Matter 10, 1224 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    S. V. Larin, A. D. Glova, E. B. Serebryakov, et al., RSC Adv. 5, 51 621 (2015).

    Article  CAS  Google Scholar 

  63. 63

    J. Rodríguez, J. Sanchez-Marin, F. Torrens, and F. Ruette, J. Mol. Struct. 254, 429 (1992).

    Article  Google Scholar 

  64. 64

    J. Murgich, J. A. Abanero, and O. P. Strausz, Energy Fuels 13, 278 (1999).

    Article  CAS  Google Scholar 

  65. 65

    J. Murgich, Mol. Simul. 29, 451 (2003).

    Article  CAS  Google Scholar 

  66. 66

    Polymer User Guide (Biosym Technologies, San Diego, 1994).

  67. 67

    M. G. Martin, Monte Carlo for Complex Chemical Systems (MCCCS) Towhee. http://towhee.sourceforge.net.

  68. 68

    N. P. Bailey, T. S. Ingebrigtsen, J. S. Hansen, et al., SciPost Phys. 3, 038 (2017).

  69. 69

    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11 225 (1996).

    Article  Google Scholar 

  70. 70

    W. L. Jorgensen, E. R. Laird, T. B. Nguyen, and J. Tirado-Rive, J. Comput. Chem. 14, 206 (1993).

    Article  CAS  Google Scholar 

  71. 71

    B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theor. Com 4 (3), 435.

  72. 72

    C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 651 (2001).

  73. 73

    C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990).

    Article  CAS  Google Scholar 

  74. 74

    H. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).

    Article  CAS  Google Scholar 

  75. 75

    E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).

    Article  CAS  Google Scholar 

  76. 76

    C. Oostenbrink, A. Villa, A. Mark, and W. van Gunsteren, J. Comput. Chem. 25, 1656 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    E. S. Boek, J. T. Padding, and T. Headen, Faraday Discuss. 144, 271 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    K. L. Gawrys, G. A. Blankenship, and P. K. Kilpatrick, Langmuir 22, 4487 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    O. C. Mullins, Energy Fuels 24, 2179 (2010).

    Article  CAS  Google Scholar 

  80. 80

    E. Rogel, Energy Fuels 14, 566 (2000).

    Article  CAS  Google Scholar 

  81. 81

    V. M. Nazarychev, S. V. Larin, A. V. Lyulin, et al., Polymers 9, 548 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  82. 82

    M. S. Diallo, A. Strachan, J.-L. Faulon, and W. A. Goddard III, Pet. Sci. Technol. 22, 877 (2004).

    Article  CAS  Google Scholar 

  83. 83

    M. S. Diallo, T. Cagin, J. L. Faulon, and W. A. Goddard III, Dev. Pet. Sci. 40, 103 (2000).

    Google Scholar 

  84. 84

    M. S. Diallo, A. Simpson, P. Gassman, et al., Environ. Sci. Technol. 37, 1783 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    J. L. Faulon, J. Chem. Inf. Comput. Sci. 34, 1204 (1994).

    Article  CAS  Google Scholar 

  86. 86

    J. Kowalewski, M. Vandenbroucke, and A. Y. Huc, Energy Fuels 10, 97 (1996).

    Article  CAS  Google Scholar 

  87. 87

    Materials and Processes Simulations (MAPS), Version 3.1 (Scienomics SARL, Paris, 2012).

  88. 88

    M. Frisch, G. Trucks, H. Schlegel, et al., Gaussian—Version 09, Revision D01 (Gaussian, Wallingford, 2009).

    Google Scholar 

  89. 89

    C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97, 10 269 (1993).

    Article  Google Scholar 

  90. 90

    R. Pan, W. Zhao, T. Zhou, and A. Zhang, J. Polym. Sci., Part B: Polym. Phys. 48, 595 (2010). V.

  91. 91

    M. Yasar, S. Akmaz, and M. A. Gurkaynak, Fuel 86, 1737 (2007).

    Article  CAS  Google Scholar 

  92. 92

    Y. Zhang, T. Takanohashi, S. Sato, et al., Energy Fuels 18, 283 (2004).

    Article  CAS  Google Scholar 

  93. 93

    A. M. Abdel Ghaffar, K. I. Kabel, R. K. Farag, et al., Res. Chem. Intermed. 41, 443 (2015).

    Article  CAS  Google Scholar 

  94. 94

    K. I. Kabel, A. M. Abdelghaffar, R. K. Farag, et al., Res. Chem. Intermed. 41, 457 (2015).

    Article  CAS  Google Scholar 

  95. 95

    L. V. Castro, E. A. Flores, and F. Vazquez, Energy Fuels 25, 539 544 (2011).

    Article  CAS  Google Scholar 

  96. 96

    I. M. Kolesnikov, Thermodynamics of Physical and Chemical Processes (Neft’ i Gas, Moscow, 2005) [in Russian].

  97. 97

    I. P. Bazarov, Thermodynamics (Lan’, Saint-Petersburg, 2010) [in Russian].

  98. 98

    I. A. Kvasnikov, Thermodynamics and Statistical Physics, vol. 1: Theory of Equilibrium Systems: Thermodynamics (Editorial URSS, Moscow, 2002 [in Russian].

  99. 99

    D. V. Sivukhin, General Course of Physics, vol. II: Thermodynamics and Molecular Physics (FIZMATLIT, Moscow, 2005) [in Russian].

  100. 100

    D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976).

    Article  CAS  Google Scholar 

  101. 101

    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977), 3rd Ed.

    Google Scholar 

  102. 102

    S. M. Walas, Phase Equilibria in Chemical Engineering (Butterworth–Heinemann, Boston, 1985).

    Google Scholar 

  103. 103

    A. A. Askadskii and V. I. Kondrashchenko, Computational Materials Science of Polymers, vol. 1: Atomic and Molecular Levels (Nauchnyi Mir, Moscow, 1999) [in Russian].

  104. 104

    A. A. Askadskii, Computational Materials Science of Polymers (Cambridge International Science, Cambridge, 2001).

    Google Scholar 

  105. 105

    A. A. AlHammadi and W. G. Chapman, Energy Fuels 31, 6019 (2017).

    Article  CAS  Google Scholar 

  106. 106

    D. L. Gonzalez, P. D. Ting, G. J. Hirasaki, and W. G. Chapman, Energy Fuels 19, 1230 (2005).

    Article  CAS  Google Scholar 

  107. 107

    M. Sedghi and L. Goual, Fluid Phase Equilib. 369, 86 (2014).

    Article  CAS  Google Scholar 

  108. 108

    S. V. Lyulin, S. V. Larin, V. M. Nazarychev, et al., Polym. Sci., Ser. C 58, 2 (2016).

    Article  CAS  Google Scholar 

  109. 109

    D. Kirchner and J. Vrabec, Multiscale Molecular Methods in Applied Chemistry (Springer, Berlin, 2012).

    Google Scholar 

  110. 110

    J. A. Elliott, Int. Mater. Rev. 56, 207 (2011).

    Article  CAS  Google Scholar 

  111. 111

    J. L. Suter and D. Groen, Adv. Mater. 27, 966 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    W. Janke and W. Paul, Soft Matter 12 (3), 642 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    F. Wang and D. P. Landau, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, 056 101 (2001).

    Google Scholar 

  115. 115

    I. V. Volgin, S. V. Larin, A. V. Lyulin, and S. V. Lyulin, Polymer 145, 80 (2018).

    Article  CAS  Google Scholar 

  116. 116

    F. Frigerio and D. Molinari, Comp. Theor. Chem. 975, 76 (2011).

    Article  CAS  Google Scholar 

  117. 117

    C. Desgranges and J. Delhommelle, Energy Fuels 31, 10 699 (2017).

    Article  CAS  Google Scholar 

  118. 118

    H. Lee and Y.-K. Lee, Phys. Chem. Chem. Phys. 19, 13 931 (2017).

    Article  Google Scholar 

  119. 119

    J. Wang, M. A. Gayatri, and A. L. Ferguson, J. Phys. Chem. B 121, 4923 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    S.-H. Kim, K.-D. Kim, H. Lee, and Y.-K. Lee, Chem. Eng. J. 314, 1 (2017).

    Article  CAS  Google Scholar 

  121. 121

    R. Skartlien, S. Simon, and J. Sjöblom, J. Dispers. Sci. Technol. 38, 440 (2017).

    Article  CAS  Google Scholar 

  122. 122

    Y. Ruiz-Morales and O. C. Mullins, Energy Fuels 29, 1597 (2015).

    Article  CAS  Google Scholar 

  123. 123

    M. Dua, X. Song, S. Zhao, et al., J. Phys. Chem. C 121, 4332 (2017).

    Article  CAS  Google Scholar 

  124. 124

    J. Chen, C. Zhong, S. Chen, et al., RSC Adv. 7, 38 193 (2017).

    Article  Google Scholar 

  125. 125

    S. Wang, J. Xu, and H. Wen, Comput. Phys. Commun. 185, 3069 (2014).

    Article  CAS  Google Scholar 

  126. 126

    P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).

    Article  Google Scholar 

  127. 127

    J. M. V. A. Koelman and P. J. Hoogerbrugge, Europhys. Lett. 21, 363 (1993).

    Article  CAS  Google Scholar 

  128. 128

    P. Español and P. Warren, J. Chem. Phys. 146, 150 901 (2017).

    Article  CAS  Google Scholar 

  129. 129

    R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  CAS  Google Scholar 

  130. 130

    P. Español and P. Warren, Europhys. Lett. 30, 191 (1995).

    Article  Google Scholar 

  131. 131

    S. V. Lyulin, L. J. Evers, P. van der Schoot, et al., Macromolecules 37, 3049 (2004).

    Article  CAS  Google Scholar 

  132. 132

    S. V. Lyulin, A. A. Darinskii, A. V. Lyulin, and M. A. J. Michels, Macromolecules 37, 4676 (2004).

    Article  CAS  Google Scholar 

  133. 133

    S. V. Lyulin, A. A. Darinskii, and A. V. Lyulin, Macromolecules 38, 3990 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed with the financial support of the Ministry of Education and Science of the Russian Federation (the agreement no. 14.613.21.0069, unique project identifier RFMEFI61317X0069).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Lyulin.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyulin, S.V., Glova, A.D., Falkovich, S.G. et al. Computer Simulation of Asphaltenes. Pet. Chem. 58, 983–1004 (2018). https://doi.org/10.1134/S0965544118120149

Download citation

Keywords:

  • asphaltenes
  • quantum chemical calculations
  • computer simulation