Advertisement

Petroleum Chemistry

, Volume 58, Issue 12, pp 983–1004 | Cite as

Computer Simulation of Asphaltenes

  • S. V. LyulinEmail author
  • A. D. Glova
  • S. G. Falkovich
  • V. A. Ivanov
  • V. M. Nazarychev
  • A. V. Lyulin
  • S. V. Larin
  • S. V. Antonov
  • P. Ganan
  • J. M. Kenny
Article

Abstract

The review describes theoretical approaches based on computer simulations at various levels of details (from quantum chemical calculations to atomistic and coarse-grained models) to study asphaltenes and systems containing asphaltenes. The used methods are described, their advantages and disadvantages are discussed in terms of computational costs and time- and spatial-scales available for simulations. The results of studies of the asphaltenes interactions with each other and their aggregation behavior in low-molecular solvents are presented. The most promising approaches of computer simulations of asphaltenes-based systems are determined.

Keywords:

asphaltenes quantum chemical calculations computer simulation 

Notes

ACKNOWLEDGMENTS

The study was performed with the financial support of the Ministry of Education and Science of the Russian Federation (the agreement no. 14.613.21.0069, unique project identifier RFMEFI61317X0069).

REFERENCES

  1. 1.
    B. Schuler, G. Meyer, D. Pena, et al., J. Am. Chem. Soc. 137, 9870 (2015).CrossRefPubMedGoogle Scholar
  2. 2.
    O. C. Mullins, Annu. Rev. Anal. Chem 4, 393 (2011).CrossRefGoogle Scholar
  3. 3.
    L. V. Melendez, A. Lache, J. A. Orrego-Ruiz, et al., J. Pet. Sci. Eng. 90–91, 56 (2012).CrossRefGoogle Scholar
  4. 4.
    S. O. Ilyin, M. P. Arinina, M. Y. Polyakova, et al., Fuel 186, 157 (2016).CrossRefGoogle Scholar
  5. 5.
    C. V. B. Fávero, T. Maqbool, M. Hoepfner, et al., Adv. Colloid Interface Sci. 244, 267 (2017).CrossRefGoogle Scholar
  6. 6.
    E. Rogel, C. Ovalles, and M. Moir, Energy Fuels 24, 4369 (2010).CrossRefGoogle Scholar
  7. 7.
    F. Rakotondradany, H. Fenniri, P. Rahimi, et al., Energy Fuels 20, 2439 (2006).CrossRefGoogle Scholar
  8. 8.
    O. C. Mullins, H. Sabbah, J. Eyssautier, et al., Energy Fuels 26, 3986 (2012).CrossRefGoogle Scholar
  9. 9.
    S. K. Kumar and R. Krishnamoorti, Annu. Rev. Chem. Biomol. 1, 37 (2010).CrossRefGoogle Scholar
  10. 10.
    L. Gonzalez, P. Lafleur, T. Lozano, et al., Polym. Composite 35, 1 (2014).CrossRefGoogle Scholar
  11. 11.
    P. G. Allison, R. D. Moser, M. Q. Chandler, et al., J. Nanomater. 16, 135 (2015).Google Scholar
  12. 12.
    M. Bhattacharya, Materials 9, 262 (2016).CrossRefPubMedCentralGoogle Scholar
  13. 13.
    H. Zou, S. Wu, and J. Shen, Chem. Rev. 108, 3893 (2008).CrossRefPubMedGoogle Scholar
  14. 14.
    K. I. Winey and R. A. Vaia, MRS Bull. 32, 314 (2007).CrossRefGoogle Scholar
  15. 15.
    http://www.sigmaaldrich.com.Google Scholar
  16. 16.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297 (5582), 787 (2002).CrossRefPubMedGoogle Scholar
  17. 17.
    S. G. Falkovich, V. M. Nazarychev, S. V. Larin, et al., J. Phys. Chem. C 120, 6771 (2016).CrossRefGoogle Scholar
  18. 18.
    S. G. Falkovich, S. V. Larin, A. V. Lyulin, et al., RSC Adv. 4, 48 606 (2014).CrossRefGoogle Scholar
  19. 19.
    M. N. Siddiqui, Macromol. Symp. 354, 184 (2015).CrossRefGoogle Scholar
  20. 20.
    M. N. Siddiqui, Polym. Composite 38, 1957 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Wu, V. K. Thakur, and M. R. Kessler, J. Mater. Sci. 51, 2394 (2016).CrossRefGoogle Scholar
  22. 22.
    H. Wu and M. R. Kessler, RSC Adv. 5, 24 264 (2015).Google Scholar
  23. 23.
    T. F. Headen, E. S. Boek, and N. T. Skipper, Energy Fuels 23, 1220 (2009).CrossRefGoogle Scholar
  24. 24.
    F. Alvarez-Ramirez and Y. Ruiz-Morales, Energy Fuels 27, 1791 (2013).CrossRefGoogle Scholar
  25. 25.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007), 2nd Ed.Google Scholar
  26. 26.
    D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Wiley, New York, 2004).Google Scholar
  27. 27.
    V. Fock, Z. Phys. 61, 126 (1930).CrossRefGoogle Scholar
  28. 28.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  29. 29.
    D. D. Li and M. L. Greenfield, Energy Fuels 25, 3698 (2011).CrossRefGoogle Scholar
  30. 30.
    H. Wang, H. Xu, W. Jia, et al., Energy Fuels 31, 2488 (2017).CrossRefGoogle Scholar
  31. 31.
    R. Hernández-Bravo, A. D. Miranda, O. Martínez-Mora, et al., Ind. Eng. Chem. Res. 56, 5107 (2017).CrossRefGoogle Scholar
  32. 32.
    N. K. Jena, Å. L. Lyne, N. Arul Murugan, et al., Mater. Struct. 50, 99 (2017).CrossRefGoogle Scholar
  33. 33.
    A. Torres, J. Amaya Suárez, E. R. Remesal, et al., J. Phys. Chem. B 122, 618 (2018).CrossRefPubMedGoogle Scholar
  34. 34.
    E. Rogel, Colloid. Surf. A 104, 85 (1995).CrossRefGoogle Scholar
  35. 35.
    A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, 799 (1993).CrossRefGoogle Scholar
  36. 36.
    A. Klamt, J. Phys. Chem. 99, 2224 (1995).CrossRefGoogle Scholar
  37. 37.
    V. M. Nazarychev, S. V. Larin, A. V. Yakimansky, et al., J. Polym. Sci., Part B: Polym. Phys. 53 (13), 912 (2015).CrossRefGoogle Scholar
  38. 38.
    N. V. Lukasheva, D. A. Tolmachev, V. M. Nazarychev, et al., Soft Matter 13, 474 (2017).CrossRefPubMedGoogle Scholar
  39. 39.
    N. I. Borzdun, S. V. Larin, S. G. Falkovich, et al., J. Polym. Sci., Part B: Polym. Phys. 54, 2448 (2016).CrossRefGoogle Scholar
  40. 40.
    J. Murgich, Pet. Sci. Technol. 20, 983 (2002).CrossRefGoogle Scholar
  41. 41.
    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education, Harlow, 2001), 2nd Ed.Google Scholar
  42. 42.
    C. A. Lemarchand, M. L. Greenfield, and J. S. Hansen, J. Phys. Chem. B 120, 5470 (2016).CrossRefPubMedGoogle Scholar
  43. 43.
    M. Sedghi, L. Goual, W. Welch, and J. Kubelka, J. Phys. Chem. B 117, 5765 (2013).CrossRefPubMedGoogle Scholar
  44. 44.
    F. Yang, P. Tchoukov, H. Dettman, et al., Energy Fuels 29, 4783 (2015).CrossRefGoogle Scholar
  45. 45.
    T. Kuznicki, J. H. Masliyah, and S. Bhattacharjee, Energy Fuels 23, 5027 (2009).CrossRefGoogle Scholar
  46. 46.
    R. B. Teklebrhan, L. Ge, S. Bhattacharjee, et al., J. Phys. Chem. B 118, 1040 (2014).CrossRefPubMedGoogle Scholar
  47. 47.
    R. B. Teklebrhan, L. Ge, S. Bhattacharjee, et al., J. Phys. Chem. B 116, 5907 (2012).CrossRefPubMedGoogle Scholar
  48. 48.
    T. F. Headen, E. S. Boek, G. Jackson, et al., Energy Fuels 31, 1108 (2017).CrossRefGoogle Scholar
  49. 49.
    P. Ungerer, D. Rigby, B. Leblanc, and M. Yiannourakou, Mol. Simul. 40, 115 (2014).CrossRefGoogle Scholar
  50. 50.
    D. D. Li and M. L. Greenfield, J. Chem. Phys. 140, 034 507 (2014).CrossRefGoogle Scholar
  51. 51.
    J. Liu, Y. Zhao, and S. Ren, Energy Fuels 29, 1233 (2015).CrossRefGoogle Scholar
  52. 52.
    X. Zhu, D. Chen, and G. Wu, Chemosphere 138, 412 (2015).CrossRefPubMedGoogle Scholar
  53. 53.
    G. Lv, G. Fengfeng, F. Gao, et al., Colloid Surf. A 515, 34 (2017).CrossRefGoogle Scholar
  54. 54.
    P. Venkataraman, K. Zygourakis, W. G. Chapman, et al., Energy Fuels 31, 1182 (2017).CrossRefGoogle Scholar
  55. 55.
    L. Liu, R. Zhang, X. Wang, et al., Energy Fuels 31, 3465 (2017).CrossRefGoogle Scholar
  56. 56.
    Y. Xiong, T. Cao, Q. Chen, et al., J. Phys. Chem. C 121, 5020 (2017).CrossRefGoogle Scholar
  57. 57.
    E. Lowry, M. Sedghi, and L. Goual, J. Mol. Liq. 230, 589 (2017).CrossRefGoogle Scholar
  58. 58.
    Z. Dong, Z. Liu, P. Wang, and X. Gong, Fuel 189, 155 (2017).CrossRefGoogle Scholar
  59. 59.
    J. S. Hansen, C. A. Lemarchand, E. Nielsen, et al., J. Chem. Phys. 138, 094 508 (2013).CrossRefGoogle Scholar
  60. 60.
    S. V. Lyulin, A. A. Gurtovenko, S. V. Larin, et al., Macromolecules 46, 6357 (2013).CrossRefGoogle Scholar
  61. 61.
    S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, et al., Soft Matter 10, 1224 (2014).CrossRefPubMedGoogle Scholar
  62. 62.
    S. V. Larin, A. D. Glova, E. B. Serebryakov, et al., RSC Adv. 5, 51 621 (2015).CrossRefGoogle Scholar
  63. 63.
    J. Rodríguez, J. Sanchez-Marin, F. Torrens, and F. Ruette, J. Mol. Struct. 254, 429 (1992).CrossRefGoogle Scholar
  64. 64.
    J. Murgich, J. A. Abanero, and O. P. Strausz, Energy Fuels 13, 278 (1999).CrossRefGoogle Scholar
  65. 65.
    J. Murgich, Mol. Simul. 29, 451 (2003).CrossRefGoogle Scholar
  66. 66.
    Polymer User Guide (Biosym Technologies, San Diego, 1994).Google Scholar
  67. 67.
    M. G. Martin, Monte Carlo for Complex Chemical Systems (MCCCS) Towhee. http://towhee.sourceforge.net.Google Scholar
  68. 68.
    N. P. Bailey, T. S. Ingebrigtsen, J. S. Hansen, et al., SciPost Phys. 3, 038 (2017).Google Scholar
  69. 69.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11 225 (1996).CrossRefGoogle Scholar
  70. 70.
    W. L. Jorgensen, E. R. Laird, T. B. Nguyen, and J. Tirado-Rive, J. Comput. Chem. 14, 206 (1993).CrossRefGoogle Scholar
  71. 71.
    B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theor. Com 4 (3), 435.Google Scholar
  72. 72.
    C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 651 (2001).Google Scholar
  73. 73.
    C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990).CrossRefGoogle Scholar
  74. 74.
    H. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).CrossRefGoogle Scholar
  75. 75.
    E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).CrossRefGoogle Scholar
  76. 76.
    C. Oostenbrink, A. Villa, A. Mark, and W. van Gunsteren, J. Comput. Chem. 25, 1656 (2004).CrossRefPubMedGoogle Scholar
  77. 77.
    E. S. Boek, J. T. Padding, and T. Headen, Faraday Discuss. 144, 271 (2010).CrossRefPubMedGoogle Scholar
  78. 78.
    K. L. Gawrys, G. A. Blankenship, and P. K. Kilpatrick, Langmuir 22, 4487 (2006).CrossRefPubMedGoogle Scholar
  79. 79.
    O. C. Mullins, Energy Fuels 24, 2179 (2010).CrossRefGoogle Scholar
  80. 80.
    E. Rogel, Energy Fuels 14, 566 (2000).CrossRefGoogle Scholar
  81. 81.
    V. M. Nazarychev, S. V. Larin, A. V. Lyulin, et al., Polymers 9, 548 (2017).CrossRefGoogle Scholar
  82. 82.
    M. S. Diallo, A. Strachan, J.-L. Faulon, and W. A. Goddard III, Pet. Sci. Technol. 22, 877 (2004).CrossRefGoogle Scholar
  83. 83.
    M. S. Diallo, T. Cagin, J. L. Faulon, and W. A. Goddard III, Dev. Pet. Sci. 40, 103 (2000).Google Scholar
  84. 84.
    M. S. Diallo, A. Simpson, P. Gassman, et al., Environ. Sci. Technol. 37, 1783 (2003).CrossRefPubMedGoogle Scholar
  85. 85.
    J. L. Faulon, J. Chem. Inf. Comput. Sci. 34, 1204 (1994).CrossRefGoogle Scholar
  86. 86.
    J. Kowalewski, M. Vandenbroucke, and A. Y. Huc, Energy Fuels 10, 97 (1996).CrossRefGoogle Scholar
  87. 87.
    Materials and Processes Simulations (MAPS), Version 3.1 (Scienomics SARL, Paris, 2012).Google Scholar
  88. 88.
    M. Frisch, G. Trucks, H. Schlegel, et al., Gaussian—Version 09, Revision D01 (Gaussian, Wallingford, 2009).Google Scholar
  89. 89.
    C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97, 10 269 (1993).CrossRefGoogle Scholar
  90. 90.
    R. Pan, W. Zhao, T. Zhou, and A. Zhang, J. Polym. Sci., Part B: Polym. Phys. 48, 595 (2010). V.Google Scholar
  91. 91.
    M. Yasar, S. Akmaz, and M. A. Gurkaynak, Fuel 86, 1737 (2007).CrossRefGoogle Scholar
  92. 92.
    Y. Zhang, T. Takanohashi, S. Sato, et al., Energy Fuels 18, 283 (2004).CrossRefGoogle Scholar
  93. 93.
    A. M. Abdel Ghaffar, K. I. Kabel, R. K. Farag, et al., Res. Chem. Intermed. 41, 443 (2015).CrossRefGoogle Scholar
  94. 94.
    K. I. Kabel, A. M. Abdelghaffar, R. K. Farag, et al., Res. Chem. Intermed. 41, 457 (2015).CrossRefGoogle Scholar
  95. 95.
    L. V. Castro, E. A. Flores, and F. Vazquez, Energy Fuels 25, 539 544 (2011).CrossRefGoogle Scholar
  96. 96.
    I. M. Kolesnikov, Thermodynamics of Physical and Chemical Processes (Neft’ i Gas, Moscow, 2005) [in Russian].Google Scholar
  97. 97.
    I. P. Bazarov, Thermodynamics (Lan’, Saint-Petersburg, 2010) [in Russian].Google Scholar
  98. 98.
    I. A. Kvasnikov, Thermodynamics and Statistical Physics, vol. 1: Theory of Equilibrium Systems: Thermodynamics (Editorial URSS, Moscow, 2002 [in Russian].Google Scholar
  99. 99.
    D. V. Sivukhin, General Course of Physics, vol. II: Thermodynamics and Molecular Physics (FIZMATLIT, Moscow, 2005) [in Russian].Google Scholar
  100. 100.
    D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976).CrossRefGoogle Scholar
  101. 101.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977), 3rd Ed.Google Scholar
  102. 102.
    S. M. Walas, Phase Equilibria in Chemical Engineering (Butterworth–Heinemann, Boston, 1985).Google Scholar
  103. 103.
    A. A. Askadskii and V. I. Kondrashchenko, Computational Materials Science of Polymers, vol. 1: Atomic and Molecular Levels (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar
  104. 104.
    A. A. Askadskii, Computational Materials Science of Polymers (Cambridge International Science, Cambridge, 2001).Google Scholar
  105. 105.
    A. A. AlHammadi and W. G. Chapman, Energy Fuels 31, 6019 (2017).CrossRefGoogle Scholar
  106. 106.
    D. L. Gonzalez, P. D. Ting, G. J. Hirasaki, and W. G. Chapman, Energy Fuels 19, 1230 (2005).CrossRefGoogle Scholar
  107. 107.
    M. Sedghi and L. Goual, Fluid Phase Equilib. 369, 86 (2014).CrossRefGoogle Scholar
  108. 108.
    S. V. Lyulin, S. V. Larin, V. M. Nazarychev, et al., Polym. Sci., Ser. C 58, 2 (2016).CrossRefGoogle Scholar
  109. 109.
    D. Kirchner and J. Vrabec, Multiscale Molecular Methods in Applied Chemistry (Springer, Berlin, 2012).CrossRefGoogle Scholar
  110. 110.
    J. A. Elliott, Int. Mater. Rev. 56, 207 (2011).CrossRefGoogle Scholar
  111. 111.
    J. L. Suter and D. Groen, Adv. Mater. 27, 966 (2015).CrossRefPubMedGoogle Scholar
  112. 112.
    W. Janke and W. Paul, Soft Matter 12 (3), 642 (2016).CrossRefPubMedGoogle Scholar
  113. 113.
    F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).CrossRefPubMedGoogle Scholar
  114. 114.
    F. Wang and D. P. Landau, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, 056 101 (2001).Google Scholar
  115. 115.
    I. V. Volgin, S. V. Larin, A. V. Lyulin, and S. V. Lyulin, Polymer 145, 80 (2018).CrossRefGoogle Scholar
  116. 116.
    F. Frigerio and D. Molinari, Comp. Theor. Chem. 975, 76 (2011).CrossRefGoogle Scholar
  117. 117.
    C. Desgranges and J. Delhommelle, Energy Fuels 31, 10 699 (2017).CrossRefGoogle Scholar
  118. 118.
    H. Lee and Y.-K. Lee, Phys. Chem. Chem. Phys. 19, 13 931 (2017).CrossRefGoogle Scholar
  119. 119.
    J. Wang, M. A. Gayatri, and A. L. Ferguson, J. Phys. Chem. B 121, 4923 (2017).CrossRefPubMedGoogle Scholar
  120. 120.
    S.-H. Kim, K.-D. Kim, H. Lee, and Y.-K. Lee, Chem. Eng. J. 314, 1 (2017).CrossRefGoogle Scholar
  121. 121.
    R. Skartlien, S. Simon, and J. Sjöblom, J. Dispers. Sci. Technol. 38, 440 (2017).CrossRefGoogle Scholar
  122. 122.
    Y. Ruiz-Morales and O. C. Mullins, Energy Fuels 29, 1597 (2015).CrossRefGoogle Scholar
  123. 123.
    M. Dua, X. Song, S. Zhao, et al., J. Phys. Chem. C 121, 4332 (2017).CrossRefGoogle Scholar
  124. 124.
    J. Chen, C. Zhong, S. Chen, et al., RSC Adv. 7, 38 193 (2017).CrossRefGoogle Scholar
  125. 125.
    S. Wang, J. Xu, and H. Wen, Comput. Phys. Commun. 185, 3069 (2014).CrossRefGoogle Scholar
  126. 126.
    P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).CrossRefGoogle Scholar
  127. 127.
    J. M. V. A. Koelman and P. J. Hoogerbrugge, Europhys. Lett. 21, 363 (1993).CrossRefGoogle Scholar
  128. 128.
    P. Español and P. Warren, J. Chem. Phys. 146, 150 901 (2017).CrossRefGoogle Scholar
  129. 129.
    R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).CrossRefGoogle Scholar
  130. 130.
    P. Español and P. Warren, Europhys. Lett. 30, 191 (1995).CrossRefGoogle Scholar
  131. 131.
    S. V. Lyulin, L. J. Evers, P. van der Schoot, et al., Macromolecules 37, 3049 (2004).CrossRefGoogle Scholar
  132. 132.
    S. V. Lyulin, A. A. Darinskii, A. V. Lyulin, and M. A. J. Michels, Macromolecules 37, 4676 (2004).CrossRefGoogle Scholar
  133. 133.
    S. V. Lyulin, A. A. Darinskii, and A. V. Lyulin, Macromolecules 38, 3990 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Lyulin
    • 1
    Email author
  • A. D. Glova
    • 1
  • S. G. Falkovich
    • 1
  • V. A. Ivanov
    • 2
  • V. M. Nazarychev
    • 1
  • A. V. Lyulin
    • 1
  • S. V. Larin
    • 1
  • S. V. Antonov
    • 3
  • P. Ganan
    • 4
  • J. M. Kenny
    • 1
  1. 1.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  4. 4.Universidad Pontificia BolivarianaMedellínColombia

Personalised recommendations