Advertisement

Petroleum Chemistry

, Volume 58, Issue 12, pp 1064–1069 | Cite as

Rheological and Tribological Properties of Lubricating Greases Based on Esters and Polyurea Thickeners

  • Yu. M. Maksimova
  • A. S. Shakhmatova
  • S. O. Ilyin
  • O. A. Pakhmanova
  • A. S. Lyadov
  • S. V. Antonov
  • O. P. ParenagoEmail author
Article
  • 17 Downloads

Abstract

Lubricating greases based on pentaerythritol and trimethylolpropane esters and dioctyl sebacate have been synthesized using diureas as a thickener prepared by reactions of toluene diisocyanate, aniline, and primary aliphatic amines of various structures. The physicochemical properties of the greases, such as ultimate strength, yield stress, modulus of elasticity, dropping point, and colloid stability, have been characterized, and data on their antiwear activity have been obtained. The relationship between the structure of grease components, its rheology, and antiwear properties has been revealed.

Keywords:

lubricating greases esters diureas rheology tensile strength colloid stability dropping point wear scar diameter 

Notes

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science of Russia, agreement no. 14.607.21.0181 (unique project identifier RFMEFI60717X0181).

REFERENCES

  1. 1.
    Lubricants and Lubrication, Ed. by T. Mang and W. Dresel (Wiley–VCH, Weinheim, 2007), 2nd Ed.Google Scholar
  2. 2.
    P. M. Lugt, Tribol. Int. 97, 467 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Liu and H. W. Sun, Lubr. Sci. 22, 405 (2010).CrossRefGoogle Scholar
  4. 4.
    M. V. Garshin, V. P. Kiprikova, A. Yu. Kilyakova, and D. S. Kolybel’skii, Tekhnol. Nefti Gaza, No. 6, 9 (2014).Google Scholar
  5. 5.
    R. Sánchez, J. M. Franco, M. A. Delgado, et al., Green Chem. 11, 686 (2009).CrossRefGoogle Scholar
  6. 6.
    J. E. Martin-Alfonso, N. Núñez, C. Valencia, et al., J. Ind. Eng. Chem. 17, 818 (2011).CrossRefGoogle Scholar
  7. 7.
    O. P. Parenago, R. Z. Safieva, S. V. Antonov, et al., Pet. Chem. 57, 766 (2017).Google Scholar
  8. 8.
    P. Nagendramma and S. Kaul, Renew. Sust. Energy Rev. 12, 764 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Malkin, V. Kulichikhin, and S. Ilyin, Rheol. Acta 56, 177 (2017).CrossRefGoogle Scholar
  10. 10.
    S. O. Ilyin, M. P. Arinina, A. Y. Malkin, and V. G. Kulichikhin, Colloid J. 78, 608 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Y. Malkin, M. V. Mironova, and S. O. Ilyin, J. Pet. Sci. Eng. 157, 117 (2017).Google Scholar
  12. 12.
    A. Y. Malkin, S. O. Ilyin, M. P. Arinina, and V. G. Kulichikhin, Colloid Polym. Sci. 295, 555 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. M. Maksimova
    • 1
  • A. S. Shakhmatova
    • 1
  • S. O. Ilyin
    • 1
  • O. A. Pakhmanova
    • 1
  • A. S. Lyadov
    • 1
  • S. V. Antonov
    • 1
  • O. P. Parenago
    • 1
    Email author
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences MoscowRussia

Personalised recommendations