Skip to main content

Ultrasound-Assisted Modification of Zeolite Catalyst for Dimethyl Ether Conversion to Olefins with Magnesium Compounds

Abstract

The influence of ultrasonic treatment at various stages of modification of ZSM-5 zeolite with magnesium compounds has been studied to obtain a nanosized zeolite and increase the dispersion of the active element. It has been found that the use of sonication at various stages of magnesium incorporation into the zeolite structure alters the texture and acid properties of the catalyst. Using temperature-programmed ammonia desorption and diffuse reflectance infrared spectroscopy, it has been shown that the sonication leads to an increase in the proportion of Brønsted acid sites of medium strength.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    J. Q. Chen, A. Bozzano, B. Glover, et al., Catal. Today 106, 103 (2005).

    Article  CAS  Google Scholar 

  2. 2

    P. Tian, Y. Wei, M. Ye, and Z. Liu, ACS Catal. 5, 1922 (2015).

    Article  CAS  Google Scholar 

  3. 3

    F. Wang; W. Zhang, X. Yong, and C. Luo, Pet. Process. Petrochem., No. 45, 46 (2014)

  4. 4

    U. Olsbye, Svelle S., Bjørgen M., et al., Angew. Chem. Int. Ed. Engl. 51, 5810 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    P. Kumar, J. W. Thybaut, G. B. Marin, et al., Ind. Eng. Chem. Res. 52, 1491 (2013).

    Article  CAS  Google Scholar 

  6. 6

    A. Takahashi, W. Xia, Q. Wu, et al., Appl. Catal., A 467, 380 (2013).

  7. 7

    E. N. Biryukova, T. I. Goryainova, R. V. Kulumbegov, et al., Pet. Chem. 51, 49 (2011).

    Article  CAS  Google Scholar 

  8. 8

    S. N. Khadzhiev, N. V. Kolesnichenko, E. N. Khivrich, et al., Pet. Chem. 53, 225 (2013).

    Article  CAS  Google Scholar 

  9. 9

    G. Cai, Z. Liu, R. Shi, et al., Appl. Catal., A 125, 29 (1995).

  10. 10

    M. Khanmohammadi, Sh. Amani, A. B. Garmarudi, and A. Niaei, Chin. J. Catal., No. 37, 325 (2016).

  11. 11

    S. M. Baghbanian, N. Rezaei, and H. Tashakkorian, Green Chem. 15, 3446 (2013).

    Article  CAS  Google Scholar 

  12. 12

    Y. Xu, Y. Song, Y. Suzuki, and Z.-G. Zhang, Catal. Sci. Technol. 3, 2769 (2013).

    Article  CAS  Google Scholar 

  13. 13

    A. A. Rownaghi, F. Rezaei, and J. Hedlund, Catal. Commun., No. 14, 37 (2011).

  14. 14

    X. D. Wang, Ya. J. Wang, and W. L. Yang, Acta Chim. Sinica 63, 354 (2003).

    Google Scholar 

  15. 15

    R. R. Willis, D. E. Kuechl, and A. I. Benin, RU Patent No. 2377180 (2009).

  16. 16

    G. T. Vuon and T. O. Do, Microporous Mesoporous Mater. 120, 310 (2009).

    Article  CAS  Google Scholar 

  17. 17

    Y. Hu, C. Liu, Y. Zhang, et al., Microporous Mesoporous Mater. 119, 306 (2009).

    Article  CAS  Google Scholar 

  18. 18

    L. K. Kazantseva, T. S. Yusupov, T. Z. Lygina, et al., Glass Ceram. 70 (9–10), 9 (2014).

    Article  CAS  Google Scholar 

  19. 19

    L. A. Belaya, V. P. Doronin, and T.P. Sorokina, Catal. Ind. 1, 237 (2009).

    Article  Google Scholar 

  20. 20

    N. V. Kolesnichenko, O. V. Yashina, N. N. Ezhova, et al., Russ. J. Phys Chem. A 92, 118 (2018).

    Article  CAS  Google Scholar 

  21. 21

    N. V. Kolesnichenko, N. N. Ezhova, and O. V. Yashina, Pet. Chem. 56, 827 (2016).

    Article  CAS  Google Scholar 

  22. 22

    A. E. Baranchikov, V. K. Ivanov, and Yu. D. Tret’ya-kov, Usp. Khim. 76, 147 (2007).

    Article  CAS  Google Scholar 

  23. 23

    N. V. Kolesnichenko, O. V. Yashina, N. A. Markova, et al., Pet. Chem. 49, 42 (2009).

    Article  Google Scholar 

  24. 24

    N. V. Kolesnichenko, T. I. Goryainova, E. N. Biryukova, et al., Pet. Chem. 51, 55 (2011).

    Article  CAS  Google Scholar 

  25. 25

    N. V. Kolesnichenko, Z. M. Bukina, S. A. Kurumov, et al., Pet. Chem. 56, 812 (2016).

    Article  CAS  Google Scholar 

  26. 26

    P. A. Jacobs, Catal. Rev. Sci. Eng. 24, 415 (1982).

    Article  CAS  Google Scholar 

  27. 27

    Ch. Peuker, J. Mol. Struct. 349, 317 (1995).

    Article  CAS  Google Scholar 

  28. 28

    P. A. Jacobs, W. J. Mortier, and J. B. Uytterhoeven, Inorg. Nucl. Chem. 40, 1919 (1978).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Federal Agency of Scientific Institutions of Russia within the framework of the State task to the Topchiev Institute of the Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Kolesnichenko.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, E.E., Obukhova, T.K., Kolesnichenko, N.V. et al. Ultrasound-Assisted Modification of Zeolite Catalyst for Dimethyl Ether Conversion to Olefins with Magnesium Compounds. Pet. Chem. 58, 863–868 (2018). https://doi.org/10.1134/S0965544118100201

Download citation

Keywords:

  • zeolite catalysts
  • modification
  • dimethyl ether
  • lower olefins
  • ultrasonic treatment