Skip to main content
Log in

Gas Permeation and Hemocompatibility of Novel Perfluorinated Polymers for Blood Oxygenation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Gas permeation properties of three highly permeable perfluorinated polymers (polyhexafluoropropylene (PHFP), amorphous Teflon AF2400, and polyperfluoro(2-methyl-2-ethyl-dioxole-1,3) (PPFMED)), which are promising materials for the dense thin layer of hollow fiber membranes for extracorporeal membrane oxygenation have been studied using nitrogen, oxygen, and carbon dioxide. Hemocompatibility of the polymeric films has also been investigated on whole blood from healthy donors. Gas permeation of the polymers increases in the order PHFP < PPFMEDD < AF2400, with PHFP alone having the permeability coefficients of the gases do not below those of polydimethylsiloxane applied as the selective layer of blood oxygenation membranes. Hemocompatibility of the polymers declines in the order PHFP > PPFMED > AF2400, with the most permeable polymer AF2400 exhibiting the worst hemocompatibility among the other polymers studied. Polyperfluoro(2-methyl-2-ethyl-dioxole-1,3) is shown to be the most appropriate polymer to fabricate hollow fiber membranes for blood oxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. V. Got’e, V. N. Poptsov, and E. A. Spirina, Extracorporeal Membrane Oxygenation in Cardiac Surgery and Transplantology (Triada, Moscow–Tver, 2013) [in Russian].

    Google Scholar 

  2. V. V. Zhmakin and V. V. Teplyakov, Sep. Purif. Technol. 186, 145 (2017).

    Article  CAS  Google Scholar 

  3. W. L. Robb, Ann. N. Y. Acad. Sci. 146, 119 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. E. Khoshbin, C. Westrope, S. Pooboni, et al., Perfusion 20, 129 (2005).

    Article  PubMed  Google Scholar 

  5. M. C. Bélanger and Y. Marois, J. Biomed. Mater. Res. 58, 467 (2001).

    Article  PubMed  Google Scholar 

  6. V. Montaño-Machado, P. Chevallier, D. Mantovani, and E. Pauthe, Biomatter 5, 979 (2015).

    Article  Google Scholar 

  7. A. Alentiev, Yu. Yampolskii, V. Ryzhikh, and D. Tsarev, Pet. Chem. 53, 554 (2013).

    Article  CAS  Google Scholar 

  8. K. Nagai and T. Masuda, Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006), p. 231.

    Google Scholar 

  9. T. Masuda, J. Polym. Sci., Part A: Polym. Chem. 45, 165 (2007).

    Article  CAS  Google Scholar 

  10. T. Sakaguchi and T. Masuda, Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017), p. 107.

    Google Scholar 

  11. E. Finkelshtein, M. Gringolts, M. Bermeshev, et al., Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017), p. 143.

    Google Scholar 

  12. N. B. McKeown and P. M. Budd, Macromolecules 43, 5163 (2010).

    Article  CAS  Google Scholar 

  13. N. B. McKeown, Sci. China Chem. 60, 1023 (2017).

    Article  CAS  Google Scholar 

  14. T. C. Merkel, I. Pinnau, R. Prabhakar, and B. D. Freeman, Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006), p. 251.

    Google Scholar 

  15. A. A. Zharov and I. A. Guzyaeva, Russ. Chem. Bull. 59, 1225 (2010).

    Article  CAS  Google Scholar 

  16. N. A. Belov, A. A. Zharov, A. V. Shashkin, et al., J. Membr. Sci. 383, 70 (2011).

    Article  CAS  Google Scholar 

  17. S. M. Nemser and I. A. Roman, US Patent No. 5 051 114 (1991).

  18. A. Yu. Alentiev, Yu. P. Yampolskii, V. P. Shantarovich, et al., J. Membr. Sci. 126, 123 (1997).

    Article  CAS  Google Scholar 

  19. V. I. Bondar, B. D. Freeman, and Y. Yampolskii, Macromolecules 32, 6163 (1999).

    Article  CAS  Google Scholar 

  20. https://compactmembrane.com.

  21. S. M. Nemser and J. Olpin, US Patent No. 5 902 747 (1999).

  22. N. Belov, R. Nikiforov, E. Polunin, et al., J. Membr. Sci., in press (2018).

  23. M. S. Makarov, V. B. Khvatov, O. I. Konyushko, et al., RU Patent No. 2484472 (2013).

  24. M. Sh. Khubutiya, M. S. Makarov, V. B. Khvatov, et al., RU Patent No. 2485502 (2013).

  25. M. Harboe, Scand. J. Clin. Lab. Investig. 11, 66 (1959).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed within the framework of the state task of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Alentiev.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alentiev, A.Y., Belov, N.A., Nikiforov, R.Y. et al. Gas Permeation and Hemocompatibility of Novel Perfluorinated Polymers for Blood Oxygenation. Pet. Chem. 58, 740–746 (2018). https://doi.org/10.1134/S0965544118090025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118090025

Keywords:

Navigation