Skip to main content
Log in

Transport Rate of Liquid Water and Saturated Water Vapors across Polymer Proton-Exchange Membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Dependences of the transport rate of liquid water and saturated water vapor across commercial membranes (Nafion, MF-4SK) and proton-exchange membranes synthesized by the authors (PVDF, PP, UHMWPE, PTFE films modified with sulfonated polystyrene) on the membrane thickness have been studied. It has been found that at room temperature (17–25°C), the transport rate of liquid water and saturated water vapor across the membranes into an air stream hardly depends on the membrane type and thickness (60–240 μm), with the transport rate of saturated vapor being almost an order of magnitude below that of liquid water contacting one of the membrane surfaces. The fact that the flux of water and water vapor across the membrane does not depend on membrane thickness under conditions of maximum moistening suggests that the flow resistance is determined by the resistance at the feed and permeate interfaces. If one of the membrane surfaces is in contact with liquid water, the transport rate is equal to the rate of water removal from the permeate surface of the membrane; in the case of contact with saturated vapor, the transport rate is determined by the rate of water sorption from the vapor phase by the membrane. The results can be used to optimize the operation of fuel cells based on polymer proton-exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. B. Rozenkevich, I. L. Rastunova, O. M. Ivanchuk, and S. V. Prokunin, Russ, J. Phys. Chem. A 77, 1000 (2003).

    Google Scholar 

  2. P. Majsztrik, A. Bocarsly, and J. Benziger, J. Phys. Chem. B 112, 16280 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. M. P. Rodgers, Z. Shi, and S. Holdcroft, J. Membr. Sci. 325, 346 (2008).

    Article  CAS  Google Scholar 

  4. J. Peron, A. Mani, X. Zhao, et al., J. Membr. Sci. 356, 44 (2010).

    Article  CAS  Google Scholar 

  5. M. Adachi, T. Navessin, Z. Xie, et al., J. Membr. Sci. 364, 183 (2010).

    Article  CAS  Google Scholar 

  6. D. A. Caulk, A. M. Brenner, and S. M. Clapham, J. Electrochem. Soc. 159, F518 (2012).

    Article  CAS  Google Scholar 

  7. X. Luio and S. Holdcroft, J. Membr. Sci. 520, 155 (2016).

    Article  CAS  Google Scholar 

  8. E. F. Abdrashitov, V. Ch. Bokun, D. A. Kritskaya, et al., Russ. J. Electrochem. 47, 387 (2011).

    Article  CAS  Google Scholar 

  9. E. F. Abdrashitov, V. Ch. Bokun, D. A. Kritskaya, et al., Solid State Ionics 251, 9 (2013).

    Article  CAS  Google Scholar 

  10. V. Ch. Bokun, D. A. Kritskaya, E. F. Abdrashitov, et al., Russ. J. Electrochem. 51, 435 (2015).

    Article  CAS  Google Scholar 

  11. E. F. Abdrashitov, D. A. Kritskaya, V. Ch. Bokun, et al., Solid State Ionics 286, 135 (2016).

    Article  CAS  Google Scholar 

  12. A. N. Ponomarev, E. F. Abdrashitov, D. A. Kritskaya, et al., Russ. J. Electrochem. 53, 589 (2017).

    Article  CAS  Google Scholar 

  13. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    Article  CAS  Google Scholar 

  14. A. B. D. Cassie, Discuss. Faraday Soc. 3, 11 (1948).

    Article  Google Scholar 

  15. T. A. Zawodzinski and S. Gottesfeld, J. Appl. Electrochem. 23, 86 (1993).

    Article  CAS  Google Scholar 

  16. T. A. Zawodzinski, Ch. Derouin, S. Radzinski, et al., J. Electrochem. Soc. 140, 1041 (1993).

    Article  CAS  Google Scholar 

  17. R. R. O’Dea, N. J. Economou, and St. K. Buratto, Macromolecules 46, 2267 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kritskaya.

Additional information

Original Russian Text © D.A. Kritskaya, E.F. Abdrashitov, V.Ch. Bokun, A.N. Ponomarev, E.A. Sanginov, Yu.A. Dobrovolsky, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 3, pp. 182–189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C. et al. Transport Rate of Liquid Water and Saturated Water Vapors across Polymer Proton-Exchange Membranes. Pet. Chem. 58, 496–502 (2018). https://doi.org/10.1134/S0965544118060063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118060063

Keywords

Navigation