Skip to main content
Log in

Total Reflux Operating Mode of Apparatuses of a Membrane Column Type during High Purification of Gases to Remove a Highly Permeable Impurity

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Performance of a three-module membrane column in high gas purification processes to remove highly permeable impurities has been experimentally evaluated using the separation of the CH4/CO2 binary gas mixture (CO2 content of 1 vol %) as an example. The time to reach the steady-state regime in a total reflux operating mode has been determined for two configurations, the three-module membrane column (TMC) and the continuous membrane column (CMC) proposed by Hwang with colleagues. The influence of the efficiency of removal of the highly permeable impurity on the degree of purification of the low-permeability target component has been shown. The obtained product purity has appeared to be 99.997 or 99.93% at the recovery rate of 15 or 81%, respectively. It has been demonstrated that the three-module membrane column hold promise for use in high gas purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Pabby, S. S. H. Rizvi, and A. S. Requena, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications (CRC Press, Boca Raton, FL, 2009).

    Google Scholar 

  2. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2004).

    Book  Google Scholar 

  3. S. Zhao, P. H. M. Feron, L. Deng, et al., J. Membr. Sci. 511, 180 (2016).

    Article  CAS  Google Scholar 

  4. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, and O. A. Pimenov, Pet. Chem. 8, 631 (2012).

    Article  CAS  Google Scholar 

  5. G. Genduso, A. Amelio, E. Colombini, et al., Chem. Eng. Res. Des. 109, 127 (2016).

    Article  CAS  Google Scholar 

  6. I. V. Vorotyntsev, D. N. Shablikin, P. N. Drozdov, et al., Pet. Chem. 57, 172 (2017).

    Article  CAS  Google Scholar 

  7. J. Pohlmann, M. Bram, K. Wilkner, and T. Brinkmann, Int. J. Greenhouse Gas Control 53, 56 (2016).

    Article  CAS  Google Scholar 

  8. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, et al., Pet. Chem. 53, 627 (2013).

    Article  CAS  Google Scholar 

  9. B. van der Bruggen, I. C. Escobar, and P. Luis, Modern Applications in Membrane Science and Technology (ACS Symposium Series), Ed. by I. C. Escobar and B. van der Bruggen (American Chemical Society, Washington, DC, 2011), p. 7.

  10. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, and E. M. Beljaev. Pet. Chem. 51, 595 (2011).

    Article  CAS  Google Scholar 

  11. B. Belaissaoui, Y. Le Moulecc, D. Willson, and E. Favre, J. Membr. Sci. 415–416, 424 (2012).

    Article  CAS  Google Scholar 

  12. B. van der Bruggen, Ind. Eng. Chem. Res. 52, 10335 (2013).

    Article  CAS  Google Scholar 

  13. I. V. Vorotyntsev, P. N. Drozodov, D. N. Shablikin, and T. V. Gamajunova, Desalination 200, 379 (2006).

    Article  CAS  Google Scholar 

  14. N. I. Laguntsov, I. M. Kurchatov, M. D. Karaseva, et al., Pet. Chem. 56, 344 (2016).

    Article  CAS  Google Scholar 

  15. M. M. Trubyanov, G. M. Mochalov, V. M. Vorotyntsev, and S. S. Suvorov, Sep. Purif. Technol. 135, 117 (2014).

    Article  CAS  Google Scholar 

  16. N. I. Laguntsov, I. M. Kurchatov, M. D. Karaseva, and V. I. Solomahin, Pet. Chem. 54, 673 (2014).

    Article  CAS  Google Scholar 

  17. S. T. Hwang and K. Kammermeyer, Membrane Separation Processes (Khimiya, Moscow, 1981) [in Russian].

    Google Scholar 

  18. R. Pathare and R. Agrawal, J. Membr. Sci. 364, 263 (2010).

    Article  CAS  Google Scholar 

  19. S. T. Hwang and K. Kammermeyer, Membranes in Separations (Wiley–Intrescience, New York, 1975).

    Google Scholar 

  20. S. Villani et al., Uranium Enrichment (Springer, Berlin, 1979).

    Book  Google Scholar 

  21. S. T. Hwang and J. M. Thorman, AIChE J. 26, 558 (1980).

    Article  CAS  Google Scholar 

  22. S. T. Hwang, K. H. Yuen, and J. M. Thorman, Sep. Sci. Technol. 15, 1069 (1980).

    Article  CAS  Google Scholar 

  23. S. T. Hwang and S. Ghalchi, J. Membr. Sci. 11, 187 (1982).

    Article  CAS  Google Scholar 

  24. Y. K. Kao, M. M. Qiu, and S. T. Hwang, Ind. Eng. Chem. Res. 28, 1514 (1989).

    Article  CAS  Google Scholar 

  25. I. S. K. Purnomo and E. Alpay, Chem. Eng. Sci. 55, 3599 (2000).

    Article  CAS  Google Scholar 

  26. V. M. Vorotyntsev ans P. N. Drozdov, Sep. Purif. Technol. 22–23, 367 (2001).

    Article  Google Scholar 

  27. P. N. Drozdov, Y. P. Kirillov, E. Y. Kolotilov, and I. V. Vorotyntsev, Desalination 146, 249 (2002).

    Article  CAS  Google Scholar 

  28. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, and K. Y. Smirnov, Desalination 200, 232 (2006).

    Article  CAS  Google Scholar 

  29. M. M. Trubyanov, P. N. Drozdov, A. A. Atlaskin, et al., J. Membr. Sci. 530, 53 (2017).

    Article  CAS  Google Scholar 

  30. M. M. Trubyanov, G. M. Mochalov, I. V. Vorotyntsev, et al., J. Chromatogr. A 1447, 129 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. V. M. Vorotyntsev, G. M. Mochalov, A. K. Matveev, et al., J. Anal. Chem. 58, 156 (2003).

    Article  CAS  Google Scholar 

  32. V. M. Vorotyntsev, G. M. Mochalov, S. S. Suvorov, and A. O. Shishkin, J. Anal. Chem. 65, 634 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vorotyntsev.

Additional information

Original Russian Text © A.A. Atlaskin, M.M. Trubyanov, N.R. Yanbikov, M.V. Bukovsky, P.N. Drozdov, V.M. Vorotyntsev, I.V. Vorotyntsev, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 3, pp. 196–206.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlaskin, A.A., Trubyanov, M.M., Yanbikov, N.R. et al. Total Reflux Operating Mode of Apparatuses of a Membrane Column Type during High Purification of Gases to Remove a Highly Permeable Impurity. Pet. Chem. 58, 508–517 (2018). https://doi.org/10.1134/S0965544118060026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118060026

Keywords

Navigation