Advertisement

Petroleum Chemistry

, Volume 58, Issue 4, pp 330–337 | Cite as

Carbon Dioxide Desorption from Amine Solution in a Nonporous Membrane Contactor

  • A. O. Malakhov
  • S. D. Bazhenov
Article
  • 24 Downloads

Abstract

Long-term testing of a membrane contactor based on a blend of the nonporous polymers polytrimethylsilylpropyne (PTMSP) and polyvinyltrimethylsilane (PVTMS) has been carried out. The flat-sheet membrane contactor has been tested for CO2 desorption from an aqueous methyldiethanolamine solution at 100°C. It has been found that the mass transfer parameters (CO2 flux and stripping efficiency) of the 95%PTMSP/5%PVTMS membrane stabilize after the 7th day of testing. The CO2 mass transfer coefficient in the membrane contactor has been evaluated, and optimal desorption parameters have been determined.

Keywords

CO2 desorption membrane contactor PTMSP PVTMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. K. Sirkar, Membrane Handbook, Ed. by W. S. W. Ho and K. K. Sirkar (Chapman & Hall, New York, 1992), ch. 46.Google Scholar
  2. 2.
    E. Drioli, A. Criscuoli, and E. Curcio, Membrane Contactors: Fundamentals, Applications and Potentialities (Elsevier, Oxford, 2005).Google Scholar
  3. 3.
    S. D. Bazhenov and E. S. Lyubimova, Pet. Chem. 56, 889 (2016).CrossRefGoogle Scholar
  4. 4.
    Z. Cui, Carbon Manage. 4, 69 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Zhao, P. H. M. Feron, L. Deng, et al., J. Membr. Sci. 511, 180 (2016).CrossRefGoogle Scholar
  6. 6.
    Z. Wang, M. Fang, H. Yu, et al., Energy Fuels 27, 6887 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Koonaphapdeelert, Z. Wu, and K. Li, Chem. Eng. Sci. 64, 1 (2009).CrossRefGoogle Scholar
  8. 8.
    P. T. Nguyen, E. Lasseuguette, Y. Medina-Gonzalez, et al., J. Membr. Sci. 377, 261 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Trusov, S. Legkov, L. J. P. Broeke, et al., J. Membr. Sci. 383, 241 (2011).CrossRefGoogle Scholar
  10. 10.
    G. A. Dibrov, V. V. Volkov, V. P. Vasilevsky, et al., J. Membr. Sci. 470, 439 (2014).CrossRefGoogle Scholar
  11. 11.
    C. A. Scholes, S. E. Kentish, G. W. Stevens, and J. Jin, Sep. Purif. Technol. 156, 841 (2015).CrossRefGoogle Scholar
  12. 12.
    C. A. Scholes, A. Qader, G. W. Stevens, and S. E. Kentish, Sep. Sci. Technol. 49, 2449 (2014).CrossRefGoogle Scholar
  13. 13.
    H. Kierzkowska-Pawlak and A. Chacuk, Chem. Eng. J. 168, 367 (2011).CrossRefGoogle Scholar
  14. 14.
    A. O. Malakhov, G. A. Dibrov, E. G. Litvinova, and E. G. Novitsky, Pet. Chem. 55, 803 (2015).CrossRefGoogle Scholar
  15. 15.
    V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, et al., J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).CrossRefGoogle Scholar
  16. 16.
    N. S. Nametkin, V. S. Khotimskii, and S. G. Durgar’yan, Dokl. Akad. Nauk SSSR 166, 1118 (1966).Google Scholar
  17. 17.
    M. R. F. Ashworth, Titrimetric Organic Analysis (Wiley–Interscience, New York, 1961).Google Scholar
  18. 18.
    H. A. Al-Ghawas, D. P. Hagewlesche, G. Rulz-Ibanez, and O. C. Sandall, J. Chem. Eng. Data 34, 385 (1989).CrossRefGoogle Scholar
  19. 19.
    M. L. Posey, K. G. Tapperson, and G. T. Rochelle, Gas Sep. Purif. 10, 181 (1996).CrossRefGoogle Scholar
  20. 20.
    R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning, J. Chem. Eng. Data 43, 378 (1998).CrossRefGoogle Scholar
  21. 21.
    S. Khaisri, P. Tontiwachwuthikul, and R. Jiraratananon, J. Membr. Sci. 376, 110 (2011).CrossRefGoogle Scholar
  22. 22.
    E. Chabanon, D. Roizard, and E. Favre, Chem. Eng. Sci. 87, 393 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations