Advertisement

Petroleum Chemistry

, Volume 58, Issue 4, pp 279–288 | Cite as

Hydrophobization of Polysulfone Hollow Fiber Membranes

  • A. V. Bildyukevich
  • T. V. Plisko
  • V. V. Usosky
  • A. A. Ovcharova
  • V. V. Volkov
Article

Abstract

The effect of the nature of the pore-forming agent (polyethylene glycol, ethylene glycol, diethylene glycol, glycerol) on the structure and performance of hollow fiber membranes spun from polysulfone solutions in N,N-dimethylacetamide was studied. The membranes have been characterized using various methods (determination of gas permeability and water entry pressure, scanning electron microscopy, contact angle measurement). To increase the hydrophobicity of the selective layer of hollow fibers, a procedure for applying a modifying polydimethylsiloxane layer onto the inner surface of the fiber has been developed, which has made it possible to increase the contact angle from 75°–77° to 115°–151° with retaining their gas transport properties. The composite membranes designed hold promise for use in gas–liquid membrane contactors, and hydrophobized membranes with reduced gas permeability can be used for hydrophobic pervaporation.

Keywords

polysulfone hollow fiber membranes surface modification polydimethylsiloxane hydrophobization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Nanotechnol. Russ. 3, 656 (2008).CrossRefGoogle Scholar
  2. 2.
    A. F. Ismail, I. R. Dunkin, S. L. Gallivan, and S. J. Shilton, Polymer 40, 6499 (1999).CrossRefGoogle Scholar
  3. 3.
    P. S. T. Machado, A. C. Habert, and C. P. Borges, J. Membr. Sci. 155, 171 (1999).CrossRefGoogle Scholar
  4. 4.
    H. A. Tsai, J. Membr. Sci. 278, 390 (2006).CrossRefGoogle Scholar
  5. 5.
    J. J. Qin, F. S. Wong, Y. Li, and Y. T. Liu, J. Membr. Sci. 211, 139 (2003).CrossRefGoogle Scholar
  6. 6.
    A. K. Pabby and A. M. Sastre, J. Membr. Sci. 430, 263 (2013).CrossRefGoogle Scholar
  7. 7.
    V. A. Kirsch, V. I. Roldugin, A. V. Bildyukevich, and V. V. Volkov, Sep. Purif. Technol. 167, 63 (2016).CrossRefGoogle Scholar
  8. 8.
    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 315, 36 (2008).CrossRefGoogle Scholar
  9. 9.
    A. V. Bildyukevich, T. V. Plisko, A. S. Liubimova, et al., J. Membr. Sci. 524, 537 (2017).CrossRefGoogle Scholar
  10. 10.
    E. S. Lyubimova, A. V. Bildyukevich, G. B. Melnikova, and V. V. Volkov, Pet. Chem. 55, 795 (2015).CrossRefGoogle Scholar
  11. 11.
    J. J. Qin and F. S. Wong, Desalination 146, 307 (2002).CrossRefGoogle Scholar
  12. 12.
    H. I. Kim and S. S. Kim, J. Membr. Sci. 286, 193 (2006).CrossRefGoogle Scholar
  13. 13.
    I. Borisov, A. Ovcharova, D. Bakhtin, et al., Fibers 5, 6 (2017).CrossRefGoogle Scholar
  14. 14.
    F. Korminouri, M. Rahbari-Sisakht, T. Matsuura, and A. F. Ismail, Chem. Eng. J. 264, 453 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Figoli, C. Ursino, F. Di Galiano, et al., J. Membr. Sci. 522, 192 (2017).CrossRefGoogle Scholar
  16. 16.
    L. Eykens, K. de Sitter, C. Dotremont, et al., Sep. Purif. Technol. 182, 36 (2017).CrossRefGoogle Scholar
  17. 17.
    L. Eykens, K. de Sitter, C. Dotremont, et al., Sep. Purif. Technol. 193, 38 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Wongchitphimon, W. Rongwong, C. Y. Chuah, et al., J. Membr. Sci. 540, 146 (2017).CrossRefGoogle Scholar
  19. 19.
    C. A. Scholes, S. E. Kentish, G. W. Stevens, and D. de Montigny, Int. J. Greenhouse Gas Control 55, 195 (2016).CrossRefGoogle Scholar
  20. 20.
    H. Wu, X. Zhang, D. Xu, et al., J. Membr. Sci. 337, 61 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Yan, X. Lu, C. Wu, et al., J. Membr. Sci. 533, 130 (2017).CrossRefGoogle Scholar
  22. 22.
    L.-F. Ren, F. Xia, V. Chen, et al., Desalination 423, 1 (2017).CrossRefGoogle Scholar
  23. 23.
    B. S. Lalia, I. Janajreh, and R. Hashaikeh, J. Membr. Sci. 539, 144 (2017).CrossRefGoogle Scholar
  24. 24.
    Korolkov, Y. G. Gorin, A. B. Yeszhanov, et al., Mater. Chem. Phys. 205, 55 (2018).CrossRefGoogle Scholar
  25. 25.
    R. M. Wu, S. Q. Liang, Z. Q., Yuan, et al., Method, Adv. Mater. Res. 160–162, 379 (2010).Google Scholar
  26. 26.
    M. Ma, Y. Mao, M. Gupta, et al., Macromolecules 38, 9742 (2005).CrossRefGoogle Scholar
  27. 27.
    L. Liu, F. Shen, X. Chen, et al., J. Membr. Sci. 499, 544 (2016).CrossRefGoogle Scholar
  28. 28.
    X. Wei, B. Zhao, X. M. Li., et al., J. Membr. Sci. 407/408, 164 (2012).CrossRefGoogle Scholar
  29. 29.
    D. Su, C. Y. Huang, Y. Hu, et al., Appl. Surf. Sci. 258, 928 (2011).CrossRefGoogle Scholar
  30. 30.
    L. Zhang, H. Chen, J. Sun, and J. Shen, Chem. Mater. 19, 948 (2007).CrossRefGoogle Scholar
  31. 31.
    M. Essalhi and M. Khayet, J. Membr. Sci. 417, 163 (2012).CrossRefGoogle Scholar
  32. 32.
    G. Bakeri, T. Matsuura, A. F. Ismail, and D. Rana, Sep. Purif. Technol. 89, 160 (2012).CrossRefGoogle Scholar
  33. 33.
    A. Ovcharova, V. Vasilevsky, I. Borisov, et al., Sep. Purif. Technol. 183, 162 (2017).CrossRefGoogle Scholar
  34. 34.
    A. Kargari, A. A. Shamsabadi, and M. B. Babaheidari, Int. J. Hydrogen Energy 39, 6588 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Sadrzadeh, M. Amirilargani, K. Shahidi, and T. Mohammadi, J. Membr. Sci. 342, 236 (2009).CrossRefGoogle Scholar
  36. 36.
    M. S. Suleman, K. K. Lau, and Y. F. Yeong, Procedia Eng. 148, 176 (2016).CrossRefGoogle Scholar
  37. 37.
    H. Kim, H.-G. Kim, S. Kim, and S. S. Kim, J. Membr. Sci. 344, 211 (2009).CrossRefGoogle Scholar
  38. 38.
    H. Zhou, Y. Su., X. Chen, et al., J. Membr. Sci. 520, 779 (2016).CrossRefGoogle Scholar
  39. 39.
    J. Guo, G. Zhang, W. Wu, et al., Chem. Eng. J. 158, 558 (2010).CrossRefGoogle Scholar
  40. 40.
    H. Kreulen, C. A. Smolders, G. F. Verstee, and W. P. M. van Swaaij, J. Membr. Sci. 78, 217 (1993).CrossRefGoogle Scholar
  41. 41.
    T. Papadopoulos and K. K. Sirkar, J. Membr. Sci. 94, 163 (1994).CrossRefGoogle Scholar
  42. 42.
    D. G. Bessarabov, E. P. Jacobs, R. D. Sanderson, and I. N. Beckman, J. Membr. Sci. 113, 275 (1996).CrossRefGoogle Scholar
  43. 43.
    D. C. Nymeijer, T. Visser, R. Assen, and M. Wessling, Sep. Purif. Technol. 37, 209 (2004).CrossRefGoogle Scholar
  44. 44.
    K. Kneifel, S. Nowak, W. Albrecht, et al., J. Membr. Sci. 276, 241 (2006).CrossRefGoogle Scholar
  45. 45.
    S. A. Hashemifard, A. F. Ismail, T. Matsuura, and M. Rezaei Dasht Arzhandi, RSC Adv. 5, 48442 (2015).CrossRefGoogle Scholar
  46. 46.
    L. Li, Z. Xiao, S. Tan, et al., J. Membr. Sci. 243, 177 (2004).CrossRefGoogle Scholar
  47. 47.
    M. B. Hägg, Encyclopedia of Membranes (Springer, Berlin, 2016).Google Scholar
  48. 48.
    A. V. Bildyukevich, T. V. Plisko, and V. V. Usosky, Pet. Chem. 56, 321 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Bildyukevich
    • 1
  • T. V. Plisko
    • 1
  • V. V. Usosky
    • 1
  • A. A. Ovcharova
    • 2
  • V. V. Volkov
    • 2
  1. 1.Institute of Physical Organic ChemistryNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations