Petroleum Chemistry

, Volume 58, Issue 3, pp 179–185 | Cite as

Group Composition of Hydrocarbons and Hetero Compounds in Stepwise-Thermolysis Products of Asphaltenes from Usa Oil

  • D. S. Korneev
  • V. N. Melenevskii
  • G. S. Pevneva
  • A. K. Golovko


The group composition of hydrocarbons (HC) and hetero compounds in the products of stepwise thermolysis of asphaltenes from crude oil of the Usa oilfield at temperatures of 120, 230, 370, 500 and 750°C has been studied. The volatile thermolysis products formed at each step of the process have been studied by gas chromatography–mass spectrometry. It has been found that the main products of stepwise thermolysis of asphaltene molecules are alkylbenzenes (AB) and saturated aliphatic hydrocarbons (SAH), aromatic fragments obtained at 370°C are mainly separate structural blocks of asphaltene molecules, and benzothiophenes (BT) predominate over dibenzothiophenes (DBT) as structural units of asphaltene molecules. It has been shown that with an increase in the process temperature, the alkylbenzenes/saturated aliphatic hydrocarbons ratio (AB/SAH + Alkenes) increases by a factor of 6 to 7; the phenanthrene/alkylbenzenes (PN/AB) ratio and the polycyclic aromatic hydrocarbons/alkylbenzenes (PAH/AB) ratio decrease by ten- and twofold, respectively; and the naphthalenes/alkylbenzenes (NP/AB) ratio increases by two times.


heavy oil stepwise thermolysis asphaltenes structure fragments hydrocarbons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ancheyta, Modeling of Processes and Reactors for Upgrading of Heavy Petroleum (CRC Boca Raton, 2013).CrossRefGoogle Scholar
  2. 2.
    O. Muraza and A. Galadima, Fuel 157, 219 (2015).CrossRefGoogle Scholar
  3. 3.
    L. A. Gulyaeva, V. A. Khavkin, O. I. Shmel’kova, and N. Y. Vinogradova, Chem. Technol. Fuels Oils 51, 422 (2015).CrossRefGoogle Scholar
  4. 4.
    P. R. Kapadia, M. S. Kallos, and I. D. Gates, Fuel Process. Technol. 131, 270 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Morimoto, Y. Sugimoto, S. Sato, and T. Takanohashi, Energy Fuels 28, 858 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Alkhaldi and M. M. Husein, Energy Fuels 28, 643 (2014).CrossRefGoogle Scholar
  7. 7.
    N. N. Sviridenko, E. B. Krivtsov, A. K. Golovko, et al., Procedia Chem., No. 10, 326 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Bonoldi, C. Flego, and G. Galasso, Energy Fuels 30, 3630 (2016).CrossRefGoogle Scholar
  9. 9.
    V. P. Sergun, E. Yu. Kovalenko, T. A. Sagachenko, and R. S. Min, Pet. Chem. 54, 83 (2014).CrossRefGoogle Scholar
  10. 10.
    A. A. Grin’ko and A. K. Golovko, Pet. Chem. 51, 192 (2011).CrossRefGoogle Scholar
  11. 11.
    L. M. Petrova, N. A. Abbakumova, T. R. Foss, and G. V. Romanov, Pet. Chem. 51, 252 (2011).CrossRefGoogle Scholar
  12. 12.
    B. Schuler, G. Meyer, D. Pena, et al., J. Am. Chem. Soc. 137, 9870 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Ruiz-Morales and O. C. Mullins, Energy Fuels 27, 5017 (2013).CrossRefGoogle Scholar
  14. 14.
    S. A. Shutkova, M. Yu. Dolomatov, and S. V. Dezortsev, Pet. Chem. 52, 267 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Alvarez-Ramirez and Y. Ruiz-Morales, Energy Fuels 27, 1791 (2013).CrossRefGoogle Scholar
  16. 16.
    D. E. Dmitriev and A. K. Golovko, Khim. Interesah Ustoich. Razvit. 18, 177 (2010).Google Scholar
  17. 17.
    B. P. Tumanyan and A. Y. Igonina, Chem. Technol. Fuels Oils, No. 2, 52 (2005).Google Scholar
  18. 18.
    V. N. Melenevskii, A. E. Kontorovich, V. A. Kashirtsev, and N. S. Kim, Pet. Chem. 49, 274 (2009).CrossRefGoogle Scholar
  19. 19.
    G. N. Gordadze, M. V. Giruts, V. N. Koshelev, and T. N. Yusupova, Pet. Chem. 55, 22 (2015).CrossRefGoogle Scholar
  20. 20.
    G. N. Gordadze, Hydrocarbons in Petroleum Geochemitsry: Theory and Practice (RGU Nefti i Gaza im. I.M. Gubkina, Moscow, 2015) [in Russian].Google Scholar
  21. 21.
    A. A. Grin’ko and A. K. Golovko, Pet. Chem. 54, 42 (2014).CrossRefGoogle Scholar
  22. 22.
    A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Pet. Chem. 52, 221 (2012).CrossRefGoogle Scholar
  23. 23.
    A. Hauser, D. Bahzad, A. Stanislaus, and M. Behbahani, Energy Fuels 22, 449 (2008).CrossRefGoogle Scholar
  24. 24.
    A. H. Alshareef, X. Tan, C. Diner, et al., Energy Fuels 28, 1692 (2014).CrossRefGoogle Scholar
  25. 25.
    R. I. Rueda-Velasquez, H. Freund, K. Qian, et al., Energy Fuels 27, 1817 (2013).CrossRefGoogle Scholar
  26. 26.
    G. P. Kayukova, A. M. Kiyamova, and G. V. Romanov, Pet. Chem. 52, 5 (2012).CrossRefGoogle Scholar
  27. 27.
    A. K. Golovko, V. F. Kamyanov, and V. D. Ogorodnikov, Russ. Geol. Geophys. 53, 1374 (2012).CrossRefGoogle Scholar
  28. 28.
    A. A. Grin’ko, N. G. Voronetskaya, G. S. Pevneva, and A. K. Golovko, in Proceedings of VI All-Russia Scientific–Practical Conference “Oil and Gas Production, Conditioning, and Transportation”, Tomsk, September 24–26, 2013 (IOA SO RAN, Tomsk, 2013), p. 274 [in Russian].Google Scholar
  29. 29.
    V. R. Antipenko, A. A. Grin’ko, and V. N. Melenevskii, Izv. Tomsk. Politekh. Univ. 319, 129 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Korneev
    • 1
  • V. N. Melenevskii
    • 2
  • G. S. Pevneva
    • 1
  • A. K. Golovko
    • 1
    • 2
  1. 1.Institute of Petroleum Chemistry, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Institute of Oil and Gas Geology and Geophysics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations