Skip to main content
Log in

Influence of Feedstock Group Composition on the Octane Number and Composition of the Gasoline Fraction of Catalytically Cracked Vacuum Distillate

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic parameters for the reactions of vacuum distillate catalytic cracking in a riser reactor have been calculated using the density functional theory. The list of the reactions has been compiled on the basis of laboratory studies on determining the group and structural-group composition of the vacuum distillate and the results of thermodynamic analysis. A kinetic model of the catalytic cracking process has been developed on the basis of a formalized scheme of the hydrocarbon conversion mechanism. By using the kinetic model derived, the effect of the group composition of four vacuum distillate samples on the octane number and the composition of the gasoline fraction of the catalytic cracking process has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Froment, Curr. Opin. Chem. Eng. 5, 1 (2014).

    Article  Google Scholar 

  2. I. M. Gerzeliev, K. I. Dement’ev, and S. N. Khadzhiev, Pet. Chem. 55, 481 (2015).

    Article  CAS  Google Scholar 

  3. J. Gao, C. Xu, S. Lin, et al., AIChE J. 45, 1095 (1999).

    Article  CAS  Google Scholar 

  4. P. Varshney, D. Kunzru, and S. K. Gupta, Indian Chem. Eng. 21, 1 (2014).

    Google Scholar 

  5. S. Chen, Y. Fan, Z. Yan, et al., Chem. Eng. Sci. 153, 58 (2016).

    Article  CAS  Google Scholar 

  6. A. A. Lappas, D. K. Iatridis, M. C. Papapetrou, et al., Chem. Eng. J. 278, 140 (2015).

    Article  CAS  Google Scholar 

  7. K. Xiong, C. Lu, Z. Wang, and X. Gao, Fuel 142, 65 (2015).

    Article  CAS  Google Scholar 

  8. M. G. Slin’ko, Katal. Prom-st., No. 5, 5 (2008).

    Google Scholar 

  9. V. P. Doronin, P. V. Lipin, and T. P. Sorokina, Catal. Ind. 4, 100 (2012).

    Article  Google Scholar 

  10. A. N. Zagoruiko, A. S. Belyi, M. D. Smolikov, and A. S. Noskov, Catal.Today 220–222, 168 (2014).

    Article  Google Scholar 

  11. S. A. Faleev, N. S. Belinskaya, E. D. Ivanchina, et al., Neftepererab. Neftekhim., No. 10, 14 (2013).

    Google Scholar 

  12. A. V. Kravtsov, E. D. Ivanchina, E. N. Ivashkina, et al., Pet. Chem. 53, 267 (2013).

    Article  CAS  Google Scholar 

  13. E. D. Ivanchina, E. N. Ivashkina, I. O. Dolganova, and V. V. Platonov, Pet. Chem. 54, 445 (2014).

    Article  CAS  Google Scholar 

  14. V. W. Weekman, Jr. and D. M. Nace, Ind. Eng. Chem. Process Des. Dev. 7, 90 (1968).

    Article  CAS  Google Scholar 

  15. J. Wei, Adv. Catal. 13, 203 (1962).

    CAS  Google Scholar 

  16. J. Zhang, Z. Wang, H. Jiang, et al., Chem. Eng. Sci. 102, 87 (2013).

    Article  CAS  Google Scholar 

  17. E. Baudrez, G. J. Heynderickx, and G. B. Marin, Chem. Eng. Res. Des. 88, 290 (2010).

    Article  CAS  Google Scholar 

  18. K. K. Dagde and Y. T. Puyate, Int. J. Eng. Res. Appl. 2, 557 (2012).

    Google Scholar 

  19. K. Xiong, Ch. Lu, Zh. Wang, and X. Gao, Fuel 142, 65 (2015).

    Article  CAS  Google Scholar 

  20. X. Dupain, E. D. Gamas, R. Madon, et al., Fuel 82, 1559 (2003).

    Article  CAS  Google Scholar 

  21. J. Corella and E. Francés, Fluid Catalytic Cracking II: Concepts in Catalyst Design, vol. 452 of ACS Symposium Series, Ed. by M. L. Occelli (American Chemical Society, Washington, 1991), p.165.

  22. A. A. Ebrahimi, S. Tarighi, and A. B. Ani, Kinet. Catal. 57, 610 (2016).

    Article  CAS  Google Scholar 

  23. Q. Fusheng, W. Yongqian and L. Qiao, Pet. Sci. Technol. 34, 335 (2016).

    Article  Google Scholar 

  24. A. K. Das, E. Baudrez, G. B. Marin, and G. J. Heynderickx, Ind. Eng. Chem. Res. 42, 2602 (2003).

    Article  CAS  Google Scholar 

  25. X. Kang, X. Guo, and H. You, Energy Sources, Part A 35, 1921 (2013).

    Article  CAS  Google Scholar 

  26. S. Radu and D. Ciuparu, Revista Chim. 1, 113 (2014).

    Google Scholar 

  27. X. Lan, C. Xu, G. Wang, et al., Chem. Eng. Sci. 64, 3847 (2009).

    Article  CAS  Google Scholar 

  28. S. M. Jacob, B. Gross, S. E. Voltz, and V. W. Weekman, Jr., AIChE J. 22, 701 (1976).

    Article  CAS  Google Scholar 

  29. P. G. Coxon and K. B. Bischoff, Ind. Eng. Chem. Res. 26, 1239 (1987).

    Article  Google Scholar 

  30. K. N. Theologos and N. C. Markatos, AIChE J. 39, 1007 (1993).

    Article  CAS  Google Scholar 

  31. I. Pitault, D. Nevicato, M. Forissier, and J. Bernard, Chem. Eng. Sci. 49, 4249 (1994).

    Article  CAS  Google Scholar 

  32. C. Derouin, D. Nevicato, M. Forissier, et al., Ind. Eng. Chem. Res. 36, 4504 (1997).

    Article  CAS  Google Scholar 

  33. Y. Sa, X. Liang, X. Chen, and J. Liu, Petrochem. Eng. Cor, 145 (1995).

  34. T. A. Berry, T. R. McKeen, T. S. Pugsley, and A. K. Dalai, Ind. Eng. Chem. Res. 43, 5571 (2004).

    Article  CAS  Google Scholar 

  35. J. Carella, Ind. Eng. Chem. Res. 43, 4080 (2004).

    Article  Google Scholar 

  36. L. Oliveira and E. C. Biscaia, Ind. Eng. Chem. Res. 28, 264 (1989).

    Article  CAS  Google Scholar 

  37. J. Ancheyta and R. Sotelo, Revista Soc. Quim. Mexico 46, 38 (2002).

    CAS  Google Scholar 

  38. A. V. Glazov, O. I. Dmitrichenko, N. V. Korotkova, et al., Neftepererab. Neftekhim., No. 9, 8 (2012).

    Google Scholar 

  39. V. I. Gordenko, V. P. Doronin, N. V. Korotkova, P. V. Lipin, O. V. Potapenko, T. P. Sorokina, Katal. Prom-st., No. 5, 9 (2014).

    Google Scholar 

  40. V. M. Potekhin and V. V. Potekhin, Fundamentals of the Theory of Chemical Processes in Technology of Organic Compounds and Petroleum Refining: A Textbook, 3rd Ed. (Lan’, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  41. R. N. Magomedov, A. Z. Popova, T. A. Maryutina, et al., Pet. Chem. 55, 423 (2015).

    Article  CAS  Google Scholar 

  42. P. V. Lipin, V. P. Doronin, and T. I. Gulyaeva, Pet. Chem. 50, 362 (2010).

    Article  Google Scholar 

  43. N. N. Abryutina, V. V. Abushaeva, O. A. Aref’ev, et al., Guidance Manual of Advanced Petroleum Analysis Methods, Ed. by A. I. Bogomolov, M.B. Temyanko, and L.I. Khotyntseva (Nedra, Leningrad, 1984) [in Russian].

    Google Scholar 

  44. VNIINP Transactions: Methods for Analysis, Investigation, and Testing of Crude Petroleum and Petroleum Products (Unconventional Procedures, Ed. by N. P. Sonina, M. M. Driatskaya, and M. M. Grine (VNIINP, Moscow, 1984) [in Russian].

  45. E. V. Nikolaeva, G. M. Khrapkovskii, A. G. Shamov, Ways of Molecular Geometry Specification for Gaussian (Kazanskii Tekhnologicheskii Univ., Kazan, 2013) [in Russian].

    Google Scholar 

  46. O. V. Potapenko, V. P. Doronin, and T. P. Sorokina, Pet. Chem. 52, 55 (2012).

    Article  CAS  Google Scholar 

  47. A. V. Kravtsov, E. D. Ivanchina, E. N. Ivashkina, et al., Pet. Chem. 53 (4), 267 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Ivanchina.

Additional information

Original Russian Text © E.D. Ivanchina, E.N. Ivashkina, G.Yu. Nazarova, G.Zh. Seitenova, 2018, published in Neftekhimiya, 2018, Vol. 58, No. 2, pp. 178–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanchina, E.D., Ivashkina, E.N., Nazarova, G.Y. et al. Influence of Feedstock Group Composition on the Octane Number and Composition of the Gasoline Fraction of Catalytically Cracked Vacuum Distillate. Pet. Chem. 58, 225–236 (2018). https://doi.org/10.1134/S0965544118030106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118030106

Keywords

Navigation