Advertisement

Petroleum Chemistry

, Volume 58, Issue 3, pp 163–173 | Cite as

Reactivity of Alkyl Halides in Concerted Molecular Decomposition Reactions (Review)

  • E. T. Denisov
  • T. S. Pokidova
Article
  • 16 Downloads

Abstract

Results of theoretical description of the reactions of concerted molecular decomposition of alkyl halides RX to olefin and HX have been analyzed. Data on quantum-chemical calculation of the transition state of these reactions are given. The results obtained by analyzing experimental data in terms of the model of intersecting parabolas have been compared. The following factors determining the reactivity of RX (X = F, Cl, Br, I) in the decomposition reactions: enthalpy of decomposition, force constants of reacting bonds, triplet repulsion, electronegativity of the reaction-center atoms, the π-bond adjacent to the reaction center, dipole–dipole interaction, and elongation of the R–X bond win the transition state, have been distinguished. The energy spectrum of partial activation energies of the concerted molecular degradation of RX has been constructed.

Keywords

concerted molecular decomposition reactions alkyl halides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Encyclopedia of Chemistry, Ed. by I. L. Knunyants et al., (Sovetskaya entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].Google Scholar
  2. 2.
    J. M. Tedder, A. Nechvatal, and A. H. Jubb, Basic Organic Chemistry, Part 5: Industrial Products (Wiley, London, 1975).Google Scholar
  3. 3.
    K. Ingold, Structure and Mechanism in Organic Chemistry (Cornell University Press, Ithaca, NY, 1969).Google Scholar
  4. 4.
    E. T. Denisov, O. M. Sarkisov, and G. I. Likhtenshtein, Chemical Kinetics: Fundamentals and New Developments (Elsevier, Amsterdam, 2003).Google Scholar
  5. 5.
    M. G. Safarov, F. A. Valeev, V. G. Safarova, and L. Kh. Faizullina, Fundamentals of Organic Chemistry (Khimiya, Moscow, 2012) [in Russian].Google Scholar
  6. 6.
    N. N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Pergamon, London, 1958).Google Scholar
  7. 7.
    S. W. Benson, Thermochemical Kinetics (Wiley, New York, 1968).Google Scholar
  8. 8.
    E. S. Swinbourne, Comprehensive Chemical Kinetics, Ed. by C. H. Bamford and C. F. H. Tipper, (Elsevier, Amsterdam, 1972), Vol. 5, p.164.Google Scholar
  9. 9.
    S. W. Benson and H. E. O’Neal, Kinetic Data on Gas Phase Unimolecular Reactions, Natl. Stand. Ref. Data Ser., NBS 21 (U.S. Dept. of Commerce, 1970).Google Scholar
  10. 10.
    T. S. Pokidova and E. T. Denisov, Russ. J. Phys. Chem. A 91, 1369 (2017).CrossRefGoogle Scholar
  11. 11.
    T. S. Pokidova and E. T. Denisov, Russ. J. Phys. Chem. B 10, 394 (2016).CrossRefGoogle Scholar
  12. 12.
    T. S. Pokidova and E. T. Denisov, Russ. J. Phys. Chem. A 90, 1733 (2016).CrossRefGoogle Scholar
  13. 13.
    T. S. Pokidova and E. T. Denisov, Russ. Chem. Bull. 66, 951 (2017).CrossRefGoogle Scholar
  14. 14.
    N. S. Emel’yanova and T. S. Pokidova, Russ. Chem. Bull. 65, 2333 (2016).CrossRefGoogle Scholar
  15. 15.
    L. L. Bladow, C. J. Stopera, W. D. Thweatt, and M. Page, J. Phys. Chem. A 114, 4304 (2010).CrossRefGoogle Scholar
  16. 16.
    C. L. Parworth, M. K. Tucker, B. E. Holmes, and G. L. Heard, J. Phys. Chem. A 115, 13133 (2011).CrossRefGoogle Scholar
  17. 17.
    I. A. Adejoro, O. O. Adeboye, and T. Esan, Afr. J. Pure Appl. Chem. 7, 231 (2013).Google Scholar
  18. 18.
    C. J. Stopera, L. L. Bladow, W. D. Thweatt, and M. Page, J. Phys. Chem. A 112, 11931 (2008).CrossRefGoogle Scholar
  19. 19.
    E. T. Denisov and T. G. Denisova, Kinet. Catal. 58, 219 (2017).CrossRefGoogle Scholar
  20. 20.
    E. T. Denisov and T. G. Denisova, Kinet. Catal. 58, 349 (2017).CrossRefGoogle Scholar
  21. 21.
    R. G. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes (Wiley, New York, 1976).Google Scholar
  22. 22.
    Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC, Boca Raton, FL, 2007).CrossRefGoogle Scholar
  23. 23.
    D. Lide, Handbook of Chemistry and Physics (CRC, Boca Raton, 2008–2009).Google Scholar
  24. 24.
    E. S. Swinbourne, Comprehensive Chemical Kinetics, Ed. by C. H. Bamford and C. F. H. Tipper, (Elsevier, Amsterdam, 1972), Vol. 5, p.164.Google Scholar
  25. 25.
    S. W. Benson and H. E. O’Neal, Kinetic Data on Gas Phase Unimolecular Reactions, Natl. Stand. Ref. Data Ser., NBS 21 (U.S. Dept. of Commerce, 1970).Google Scholar
  26. 26.
    E. T. Denisov and T. S. Pokidova, Russ. Chem. Rev. 81, 434 (2012).Google Scholar
  27. 27.
    E. T. Denisov, T. G. Denisova, and T. S. Pokidova, Handbook of Free Radical Initiators (Wiley, Hoboken, NJ, 2003).CrossRefGoogle Scholar
  28. 28.
    I. V. Aleksandrov, Teor. Eksp. Khim. 12, 299 (1976).Google Scholar
  29. 29.
    E. T. Denisov, Russ. Chem. Rev. 66, 859 (1997).CrossRefGoogle Scholar
  30. 30.
    L. Pauling, General Chemistry (Freeman and Co., San Francisco, 1970).Google Scholar
  31. 31.
    T. I. Drozdova, E. T. Denisov, A. F. Shestakov, and N. S. Emel’yanova, Kinet. Catal. 47, 106 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations