Petroleum Chemistry

, Volume 58, Issue 3, pp 197–202 | Cite as

Zn(II) Complex Catalyzed Coupling Aquathermolysis of Water-Heavy Oil-Methanol at Low Temperature

  • Gang Chen
  • Weihua Yuan
  • Jiao Yan
  • Mei Meng
  • Zheng Guo
  • Xuefan Gu
  • Jie Zhang
  • Chengtun Qu
  • Hua Song
  • Ayodeji Jeje
Article
  • 5 Downloads

Abstract

A Zn(II) coordination complex was synthesized, characterized, and used for catalytic aquathermolysis of heavy oil at low temperatures for the first time. The effects of water content and catalyst concentration on aquathermolysis were investigated. And then a tri-component coupling aquathermolysis of waterheavy oil-methanol was designed and the reaction conditions were investigated. With the catalyst and methanol, the reaction occurred at temperatures as low as 180°C. The viscosity of the product was also substantially reduced from around 24 400 to 6420 mPa s by the decomposition of the large hydrocarbon molecules.

Keywords

heavy oil catalytic aquathermolysis viscosity reduction coordination complex methanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Z. Hu, Heavy Oil Exploitation Technology (Petroleum Industry Publishing Inc., Beijing, 1998).Google Scholar
  2. 2.
    L. H. Lu, M. H. Li, and Y. L. Su, Neimenggu Chem. Industry 3, 110 (2005).Google Scholar
  3. 3.
    J. B. Hyne and J. W. Greidanus, “Aquathermolysis of heavy oil”, in Proc. of 2nd Int. Conf. on Heavy Crude and Tar Sands (Caracas, Venezuela, 1982), p.25.Google Scholar
  4. 4.
    P. D. Clark and J. B. Hyne, AOSTRA J. Res. 1, 15 (1984).Google Scholar
  5. 5.
    J. B. Hyne, “A synopsis of work on the chemical reactions between water and heavy oil sands during simulated steam stimulation”, AOSTRA Synopsis Report No. 50, Aquathermolysis, 1986.Google Scholar
  6. 6.
    S. K. Maity, J. Ancheyta, and G. Marroquín, Energy Fuels 24, 2809 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. H. Shokrlu and T. Babadagli, J. Petrol. Sci. Eng. 119, 210 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Yang and I. D. Gates, Nat. Resour. Res. 18 (3), 213 (2009).CrossRefGoogle Scholar
  9. 9.
    L. G. Zhong, Y. J. Liu, and H. F. Fan, in SPE Int. Improved Oil Recovery Conf. in Asia Pacific (Kuala Lumpur, Malaysia, 2003), Paper No. 84863-MS.Google Scholar
  10. 10.
    P. D. Clark, N. I. Dowling, J. B. Hyne, and K. L. Lesage, Fuel 66, 1353 (1987).CrossRefGoogle Scholar
  11. 11.
    Y. J. Liu and H. F. Fan, Energy Fuels 16, 842 (2002).CrossRefGoogle Scholar
  12. 12.
    J. Zhang, X. L. Li, G. Chen, H. J. Su, and W. Zhao, J. Fuel Chem. Tech. 42 (4), 443 (2014).CrossRefGoogle Scholar
  13. 13.
    G. Chen, J. Yan, Y. Bai, X. F. Gu, J. Zhang, Y. F. Li, and A. Jeje, Petrol. Sci. Technol. 35 (2), 113 (2017).CrossRefGoogle Scholar
  14. 14.
    G. Chen, W. H. Yuan, H. J. Su, J. Zhang, X. F. Gu, Y. Bai, and A. Jeje, Russ. J. Appl. Chem. 89 (11), 1853 (2016).CrossRefGoogle Scholar
  15. 15.
    Analysis of Family Composition of Rock Extract and Crude Oil by TLC-FID (China National Petroleum Corporation, 1997).Google Scholar
  16. 16.
    Analysis of Family Composition of Rock Extract and Crude Oil by Column Chromatography (China National Petroleum Corporation, 1995).Google Scholar
  17. 17.
    R. Sanyal, S. K. Dash, S. Das, S. Chattopadhyay, S. Roy, and D. Das, J. Biol. Inorg. Chem. 19, 1099 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Tang, Y. Liu, P. Zhu, Q. S. Xue, L. Chen, M. Y. He, and Y. Lu, AIChE J. 55 (5), 1217 (2009).CrossRefGoogle Scholar
  19. 19.
    C. J. Jiang, D. L. Trimm, and M. S. Wainwright, Appl. Catal. A: General 97, 145 (1993).CrossRefGoogle Scholar
  20. 20.
    Y. Q. Wang, Y. L. Chen, J. He, P. Li, and C. Yang, Energy Fuels 24, 1502 (2010).CrossRefGoogle Scholar
  21. 21.
    K. Chao, Y. L. Chen, H. C. Liu, X. M. Zhang, and J. Li, Energy Fuels 26, 1152 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Q. Wang, Study on Catalytic Aquathermolysis of Heavy Oil at Relatively Low Temperature (China University of Geosciences, Wuhan, 2010).Google Scholar
  23. 23.
    H. F. Fan, Y. Zhang, and Y. J. Lin, Fuel 83, 2035 (2009).CrossRefGoogle Scholar
  24. 24.
    P. C. Mandal, Wahyudiono, M. Sasaki, and M. Goto, Fuel Process. Technol. 106, 641 (2013).CrossRefGoogle Scholar
  25. 25.
    G. Chen, Y. Tang, and J. Zhang, Chem. Cent. J. 5, 82 (2011).CrossRefGoogle Scholar
  26. 26.
    G. Chen, Y. Bai, J. Zhang, W. H. Yuan, H. Song, and A. Jeje, Petrol. Sci. Technol. 34 (14), 1285 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Gang Chen
    • 1
  • Weihua Yuan
    • 1
  • Jiao Yan
    • 1
  • Mei Meng
    • 1
  • Zheng Guo
    • 1
  • Xuefan Gu
    • 1
  • Jie Zhang
    • 1
  • Chengtun Qu
    • 1
  • Hua Song
    • 2
  • Ayodeji Jeje
    • 2
  1. 1.College of Chemistry and Chemical EngineeringXi’an Shiyou UniversityXi’anChina
  2. 2.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations