Mathematical Modeling of Ion Transport and Water Dissociation at the Ion-Exchange Membrane/Solution Interface in Intense Current Regimes

Abstract

At current densities exceeding the limiting current density, H+ and OH ions are generated at the interface of the ion-exchange membrane with a depleted solution as a result of the dissociation of water molecules. At present, it is generally accepted that water splitting occurs in a thin (a few nanometers) layer inside the membrane, this reaction being catalytic in nature. The mathematical model of ion transport in the diffusion layer near the membrane surface has been constructed and numerically studied under conditions when dissociation and recombination processes involving water molecules and H+ and OH ions occur simultaneously. It has been shown that in overlimiting current regimes under very high voltages, intense noncatalytic dissociation of water molecules in the extended space charge region of the depleted solution can occur irrespective of the catalytic splitting of water. Since this region has macroscopic dimensions, the rate of noncatalytic water dissociation is comparable with the rate of the corresponding catalytic process. The obtained results significantly supplement modern concepts of the mechanism of generation of H+ and OH ions in membrane systems, showing that this process can proceed not only in accordance with the conventional mechanism with the catalytic participation of functional groups and/or other compounds, but also via the noncatalytic mechanism that has not been taken into account to the present.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. O. Chubyr’, A. V. Kovalenko, and M. Kh. Urtenov, Two-Dimensional Mathematical Models of Binary-Electrolyte Transport in Membrane Systems (KGTU, Krasnodar, 2012) [in Russian].

    Google Scholar 

  2. 2.

    V. J. Frilette, J. Phys. Chem. 60, 435 (1956).

    CAS  Article  Google Scholar 

  3. 3.

    T. R. E. Kressman and F. L. Tye, Discuss. Faraday Soc. 21, 185 (1956).

    Article  Google Scholar 

  4. 4.

    N. W. Rosenberg and C. E. Tirrell, Ind. Eng. Chem. 49, 780 (1957).

    CAS  Article  Google Scholar 

  5. 5.

    B. A. Cooke, Electrochim. Acta 4, 179 (1961).

    CAS  Article  Google Scholar 

  6. 6.

    H. P. Gregor and M. A. Peterson, J. Phys. Chem. 68, 2201 (1964).

    CAS  Article  Google Scholar 

  7. 7.

    M. Block and J. A. Kitchener, J. Electrochem. Soc. 113, 947 (1966).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Oda and T. Yawataya, Desalination 5, 129 (1968).

    CAS  Article  Google Scholar 

  9. 9.

    K. S. Spiegler, J. Leibovitz, and J. Sinkovic, Pontificiae 40, 727 (1976).

    CAS  Google Scholar 

  10. 10.

    V. P. Greben, N. Y. Pivovarov, N. Y. Kovarskii, and G. V. Nefedova, Sov. J. Phys. Chem 52, 2641 (1978).

    CAS  Google Scholar 

  11. 11.

    R. Simons, Desalination 28, 41 (1979).

    CAS  Article  Google Scholar 

  12. 12.

    R. Simons, Nature 280, 824 (1979).

    CAS  Article  Google Scholar 

  13. 13.

    R. Simons, Electrochim. Acta 29, 151 (1984).

    CAS  Article  Google Scholar 

  14. 14.

    V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  15. 15.

    V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  16. 16.

    V. I. Zabolotskii, V. V. Nikonenko, N. M. Korzhenko, et al., Russ. J. Electrochem. 38, 810 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    V. I. Zabolotskii, K. A. Lebedev, and N. V. Shel’-deshov, Nauchn. Zh. KubGAU, No. 124, 210 (2016).

    Google Scholar 

  18. 18.

    A. V. Kovalenko, M. Kh. Urtenov, N. M. Seidova, and A. V. Pis’menskii, Nauchn. Zh. KubGAU, No. 121, 1929 (2016).

    Google Scholar 

  19. 19.

    I. Ruhinstein and L. Shtilman, J. Chem. Soc., Faraday Trans. 2 75, 231 (1979).

    Article  Google Scholar 

  20. 20.

    M. Kh. Urtenov, E. V. Kirillova, N. M. Seidova, and V. V. Nikonenko, J. Phys. Chem. 111, 14208 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    A. V. Sokirko and Yu. I. Kharkats, Elektrokhimiya 25, 232 (1989).

    CAS  Google Scholar 

  22. 22.

    N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, et al., Russ. J. Electrochem. 43, 307 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    N. V. Sheldeshov, V. I. Zabolotskii, A. V. Bespalov, et al., Pet. Chem. 57, 518 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    A. V. Kovalenko, A. M. Uzdenova, M. Kh. Urtenov, and V. V. Nikonenko, Mathematical Modeling of Physicochemical Processes in the Comsol Multiphysics 5.2 Environment (Lan’, St. Petersburg, 2017) [in Russian].

    Google Scholar 

  25. 25.

    V. I. Zabolotskii, L. Novak, A. V. Kovalenko, et al., Pet. Chem. 57, 779 (2017).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Urtenov.

Additional information

Original Russian Text © M.Kh. Urtenov, A.V. Pismensky, V.V. Nikonenko, A.V. Kovalenko, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 1, pp. 24–33.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urtenov, M.K., Pismensky, A.V., Nikonenko, V.V. et al. Mathematical Modeling of Ion Transport and Water Dissociation at the Ion-Exchange Membrane/Solution Interface in Intense Current Regimes. Pet. Chem. 58, 121–129 (2018). https://doi.org/10.1134/S0965544118020056

Download citation

Keywords

  • ion-exchange membrane
  • limiting current
  • modeling
  • water dissociation
  • catalytic reaction
  • noncatalytic reaction