Short Side Chain Aquivion Perfluorinated Sulfonated Proton-Conductive Membranes: Transport and Mechanical Properties

Abstract

Data on the water uptake, proton conductivity, diffusion permeability, cation transport selectivity, and mechanical properties of short side chain Aquivion sulfonated perfluoropolymer membranes with an equivalent weight of 870 and 965 have been described. Properties of the membranes have been compared with those of a long side chain Nafion 212 membrane (equivalent weight of 1100). An increase in the equivalent weight leads to an increase in the sorption exchange capacity and water uptake of the membranes and a decrease in their proton conductivity. The conductivity of the Aquivion membrane with an equivalent weight of 870 is 1.4–1.5 times higher than that of the Nafion 212 membrane; it reaches 13.6 mS/cm in contact with water and 1.0 mS/cm at a relative humidity of 32% at 25°C. Diffusion permeability and cation transport selectivity exhibit a nonmonotonic dependence on the equivalent weight of the material. The lowest diffusion permeability, the highest Na+ cation transport selectivity (99.5%), and the best mechanical properties have been found for the Aquivion membrane with an equivalent weight of 965, which is characterized by the highest degree of crystallinity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Int. J. Hydrogen Energy 35, 9349 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    S. Bose, T. Kuila, T. X. Hien Nguyen, et al., Prog. Polym. Sci. 36, 813 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    E. Yu. Safronova and A. B. Yaroslavtsev, Pet. Chem. 56, 281 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Deuk Ju Kim, Min Jae Jo, and Sang Yong Nam, J. Ind. Eng. Chem. 21, 36 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    C. M. Branco, A. El-kharouf, and S. Du, in Reference Module in Materials Science and Materials Engineering., Ed. by S. Hashmi (Elsevier, 2017). doi 10.1016/b978-0-12-803581-8.09261-4

  7. 7.

    A. B. Yaroslavtsev, Russ. Chem. Rev. 78 (11), 1013 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    G. Pourcelly, Pet. Chem. 51, 480 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    G. Alberti, R. Narducci, and M. Sganappa, J. Power Sources 178, 575 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    E. Safronova, D. Safronov, A. Lysova, et al., Sens. Actuators B 240, 1016 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    B. P. Tripathi and V. K. Shahi, Prog. Polym. Sci. 36, 945 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    E. Yu. Safronova and A. B. Yaroslavtsev, Solid State Ionics 221, 6 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    V. D. Noto, N. Boaretto, E. Negro, et al., Int. J. Hydrogen Energy 37, 6215 (2012).

    Article  Google Scholar 

  14. 14.

    H. Strathmann, A. Grabowski, and G. Eigenberger, J. Ind. Eng. Chem. Res. 52, 10364 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    B. R. Matos, R. A. Isidoro, E. I. Santiago, et al., Int. J. Hydrogen Energy 40, 1859 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    E. Gerasimova, E. Safronova, A. Ukshe, et al., Chem. Eng. J. 305, 121 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    I. A. Prikhno, E. Yu. Safronova, and A. B. Yaroslavtsev, Int. J. Hydrogen Energy 41, 15585 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, Pet. Chem. 57, 299 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    C. C. Ke, X. J. Li, S. G. Qu, et al., Polym. Adv. Technol. 23, 92 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    H. Tang, Z. Wan, M. Pan, and S. P. Jiang, Electrochem. Commun. 9, 2003 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    A. D’Epifanio, B. Mecher, E. Fabbri, et al., J. Electrochem. Soc. 154, B1148 (2007).

    Article  Google Scholar 

  22. 22.

    K. D. Kreuer, M. Schuster, B. Obliers, et al., J. Power Sources 178, 499 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    P. Xiao, J. Li, H. Tang, et al., J. Membr. Sci. 442, 65 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    J. Li, M. Pan, and H. Tang, RSC Adv. 4, 3944 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    N. Berezina, S. Timofeev, and N. Kononenko, J. Membr. Sci. 209, 509 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    G. Alberti, R. Narducci, and M. Sganappa, J. Power Sources 178, 575 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    R. Kuwertz, C. Kirstein, T. Turek, and U. Kunz, J. Membr. Sci. 500, 225 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    A. Skulimowska, M. Dupont, M. Zaton, et al., Int. J. Hydrogen Energy 39, 6307 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    M. Amirinejad, S. S. Madaeni, M. A. Navarra, et al., J. Power Sources 196, 988 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    M. Geise, H. J. Cassady, D. R. Paul, et al., Phys. Chem. Chem. Phys. 16, 21673 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    V. I. Volkov, E. V. Volkov, S. V. Timofeev, et al., Russ. J. Inorg. Chem. 55, 315 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    V. I. Roldugin and L. V. Karpenko-Jereb, Colloid J. 78, 795 (2016).

    Article  Google Scholar 

  33. 33.

    A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).

    Article  Google Scholar 

  34. 34.

    G. Gebel and R. B. Moore, Macromolecules 33, 4850 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    K. D. Kreuer, M. Schuster, B. Obliers, et al., J. Power Sources 178, 499 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    M. K. Mistry, N. R. Choudhury, N. K. Dutta, and R. Knott, Langmuir 26, 19073 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Safronova.

Additional information

Original Russian Text © E.Yu. Safronova, A.K. Osipov, A.B. Yaroslavtsev, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 1, pp. 34–41.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safronova, E.Y., Osipov, A.K. & Yaroslavtsev, A.B. Short Side Chain Aquivion Perfluorinated Sulfonated Proton-Conductive Membranes: Transport and Mechanical Properties. Pet. Chem. 58, 130–136 (2018). https://doi.org/10.1134/S0965544118020044

Download citation

Keywords

  • sulfonated perfluoropolymers
  • Aquivion
  • proton conductivity
  • selectivity
  • mechanical properties
  • Nafion