Production of Pure Hydrogen from Diesel Fuel by Steam Pre-Reforming and Subsequent Conversion in a Membrane Reactor


The results of experimental study and mathematical modeling of a fuel processor for the production of pure hydrogen from diesel fuel with a productivity of 600–700 g (H2)/h, consisting of an adiabatic reactor for diesel fuel pre-reforming followed by steam conversion of pre-reforming products in a catalytic Pd–Ag membrane reactor for hydrogen extraction are presented. The membrane reactor consists of 32 membrane modules arranged in 8 sections of 4 modules each. A mathematical model has been developed and two schemes of layout of the modules in the membrane reactor have been simulated. One scheme involves the cross-flow distribution of flue gas and fuel gas reformate to individual modules and leads to overheating of the input modules and cooling of the output modules. The other scheme with the cocurrent distribution of streams, along both the reactant path and the flue gas path, is preferable from the viewpoint of the temperature uniformity of different modules within a section. On the basis of the data obtained, an estimated calculation of the parameters of a power generation unit with a battery of low-temperature fuel cells has been made. For the example considered, the thermal efficiency of the fuel processor is 87%. With an efficiency of the fuel cell battery of 42%, the electrical efficiency of the fuel cell power unit will be 36%.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. R. Rostrup-Nielson, T. S. Christensen, and I. Dybkjaer, Stud. Surf. Sci. Catal. 113, 81 (1998).

    Article  Google Scholar 

  2. 2.

    Y. Chen, Y. Wang, H. Xu, and G. Xiong, Ind. Eng. Chem. Res. 46, 510 (2007).

    Google Scholar 

  3. 3.

    M. Miyamoto, C. Hayakawa, R. Kamata, et al., Int. J. Hydrogen Energy 36, 7771 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    A. B. Shigarov, A. S. Brayko, V. B. Avakov, et al., Int. J. Hydrogen Energy 42, 6713 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    V. A. Kirillov, A. B. Shigarov, Yu. I. Amosov, et al., Theor. Found. Chem. Eng. 49, 30 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    F. Gallucci, E. Fernandez, P. Corengia, and M. van Sint Annaland, Chem. Eng. Sci. 92, 40 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    V. N. Babak, L. P. Didenko, and S. E. Zakiev, Theor. Found. Chem. Eng. 47, 719 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    A. A. Lytkina, A. B. Ilin, and A. B. Yaroslavtsev, Pet. Chem. 56, 1060 (2016).

    Article  Google Scholar 

  9. 9.

    T. V. Bukharkina, N. N. Gavrilova, A. S. Kryzhanovskiy, et al., Pet. Chem. 55, 932 (2015).

    Article  Google Scholar 

  10. 10.

    L. P. Didenko, V. I. Savchenko, L. A. Sementsova, and P. E. Chizhov, Pet. Chem. 56, 459 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    L. P. Didenko and M. S. Voronetskii, et al., Mezhd. Zh. Altern. Energ. Ekol., No. 10, 154 (2010).

    Google Scholar 

  12. 12.

    A. B. Shigarov, V. D. Meshcheryakov, and V. A. Kirillov, Theor. Found. Chem. Eng. 45, 595 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    M. Patrascu and M. Sheintuch, Chem. Eng. J. 262, 862 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    S. Tosti, L. Bettinali, and V. Violante, Int. J. Hydrogen Energy 25, 319 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    F. Gallucci, L. Paturzo, A. Fama, and A. Basile, Ind. Eng. Chem. Res. 43, 928 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    K. S. Rothenberger, A. V. Gugini, B. Y. Howard, et al., J. Membr. Sci. 255, 55 (2004).

    Article  Google Scholar 

  17. 17.

    J. Tong and Y. Matsumura, Ind. Eng. Chem. Res. 44, 1454 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    J. R. Brenner, G. Bhagat, and P. Vasa, Int. J. Oil Gas Coal Technol. 1, 109 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Chen, Y. Wang, H. Xu, and G. Xiong, Appl Catal., B 80, 283 (2008).

    Article  Google Scholar 

  20. 20.

    K. Jaroch and H. de Lasa, Ind. Eng. Chem. Res. 40, 5391 (2001).

    Article  Google Scholar 

  21. 21.

    V. A. Kirillov, V. D. Meshcheryakov, O. F. Brizitskii, and V. Ya. Terent’ev, Theor. Found. Chem. Eng. 44, 227 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    N. Mori, T. Nakamura, K. Noda, et al., Ind. Eng. Chem. Res. 46, 1952 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    A. B. Shigarov and V. A. Kirillov, Theor. Found. Chem. Eng. 46, 97 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    T. S. Christensen, Appl. Catal., A 138, 285 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    T. Suzuki, H. Iwanami, O. Iwamoto, and T. Kitahara, Int. J. Hydrogen Energy 26, 935 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    F. Arena, G. Trunfio, E. Alongi, et al., Appl Catal., A 266, 155 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    R. M. Navarro, M. C. Galvan, N. Mota, et al., Chem-CatChem 3, 440 (2011).

    Google Scholar 

  28. 28.

    J. Zheng, J. J. Strohm, and C. Song, Fuel Process. Technol. 89, 440 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    K. O. Christensen, D. Chen, R. Lodeng, and A. Holmen, Appl. Catal., A 314, 9 (2006).

    CAS  Article  Google Scholar 

  30. 30.

  31. 31.

    X. Xu, X. Liu, and B. Xu, Int. J. Energy Res. 40, 1157 (2016).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. A. Kirillov.

Additional information

Original Russian Text © V.A. Kirillov, A.B. Shigarov, Yu.I. Amosov, V.D. Belyaev, E.Yu. Gerasimov, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 1, pp. 3–14.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirillov, V.A., Shigarov, A.B., Amosov, Y.I. et al. Production of Pure Hydrogen from Diesel Fuel by Steam Pre-Reforming and Subsequent Conversion in a Membrane Reactor. Pet. Chem. 58, 103–113 (2018).

Download citation


  • membrane reactor
  • catalyst
  • pre-reforming
  • foamed material
  • hydrogen
  • steam conversion
  • natural gas
  • palladium membrane
  • fuel cell