Advertisement

Petroleum Chemistry

, Volume 57, Issue 14, pp 1318–1325 | Cite as

Formation and Catalytic Behavior Of Fine Iron-Containing Composite Fischer–Tropsch Catalysts in a Slurry Reactor

  • M. V. KulikovaEmail author
  • O. S. Dement’eva
  • S. O. Ilyin
  • S. N. Khadzhiev
Article
  • 10 Downloads

Abstract

The formation of nanosized stable iron-containing suspensions for implementing Fischer–Tropsch synthesis in the three-phase system is studied. The introduction of a polymer component in the composition of the dispersion medium is favorable for formation of particles of the dispersed phase of catalytic suspension with a size of nearly 170 nm. It is shown that the concentration of polyacrylonitrile in the composite metal-polymer systems affects their catalytic and physicochemical properties. Optimization of the catalyst system composition with respect to the content of the polymer component in the dispersion medium makes it possible to increase the yield of target products of Fischer–Tropsch synthesis in the studied temperature range by 30−35% compared with the system synthesized without any polymer component.

Keywords

Fischer–Tropsch synthesis combined metal-polymer systems nanosized catalysts three-phase system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Keim, Catalysis in C1 Chemistry [D. Reidel, Dordrecht, 1983].CrossRefGoogle Scholar
  2. 2.
    B. H. Davis, Catal. Today 71, 249 (2002).CrossRefGoogle Scholar
  3. 3.
    S. N. Khadzhiev and A. Yu. Krylova, Pet. Chem. 51 (2), 74 (2011).CrossRefGoogle Scholar
  4. 4.
    S. N. Khadzhiev, A. Yu. Krylova, M. V. Kulikova, A. S. Lyadov, and S. A. Sagitov, Pet. Chem. 53 (3), 152 (2013).CrossRefGoogle Scholar
  5. 5.
    A. V. Loginov, V. V. Gorbunova, and T. B. Boitsova, Zhurn. Obshch. Khim 67 (2), 189 (1997).Google Scholar
  6. 6.
    G. Yu. Yurkov, S. P. Gubin, D. A. Pankratov, Yu. A. Koksharov, A. V. Kozinkin, Yu. I. Spichkin, T. I. Nedoseikina, I. V. Pirog, and V. G. Vlasenko, Neorg. Mat. 38 (2), 186 (2002).Google Scholar
  7. 7.
    M. S. Korobov, G. Yu. Yurkov, A. V. Kozinkin, Yu. A. Koksharov, I. V. Pirog, S. V. Zubkov, V. V. Kitaev, D. A. Sarychev, V. M. Buznik, A. K. Tsvetnikov, and S. P. Gubin, Neorg. Mat. 40 (1), 31 (2004).Google Scholar
  8. 8.
    I. D. Kosobudskii, L. V. Kashkina, S. P. Gubin, G. A. Petrakovskii, V. P. Piskorskii, and N. M. Svirskaya, Vysokomol. Soedin. 27 (4), 689 (1985).Google Scholar
  9. 9.
    M. V. Kulikova, A. Kh. Al’ Khazradzhi, O. S. Dement’eva, M. I. Ivantsov, V. R. Flid, and S. N. Khadzhiev, Pet. Chem. 55 (5), 537 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Vélez and M. Khayet, and J. M. Ortiz De Zarate, Appl. Energy 143, 383 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Kulikova
    • 1
    Email author
  • O. S. Dement’eva
    • 1
  • S. O. Ilyin
    • 1
  • S. N. Khadzhiev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations